函數(shù)f(x)=
-x2+2x
的單調(diào)遞減區(qū)間是
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=-x2+2x≥0,求得函數(shù)f(x)的定義域,再由f(x)=
t
,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.再利用二次函數(shù)的性質(zhì)可得結(jié)論.
解答: 解:令t=-x2+2x≥0,求得0≤x≤2,故函數(shù)f(x)的定義域為[0,2],
再由f(x)=
t
,可得本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.
利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的減區(qū)間為[1,2],
故答案為:[1,2].
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,根式函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,點P(1,
2
3
)在橢圓C上,且PF2⊥x軸.
(1)求橢圓C的方程;
(2)求過右焦點F2且斜率為1的直線l被橢圓C截得的弦長|AB|;
(3)E、F是橢圓C上的兩個動點,如果直線PE的斜率與PF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<1,則函數(shù)y=|logax|-a|x|零點的個數(shù)是(  )
A、1個B、2個
C、3個D、1個或2個或3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為DJ、DE,且DJ⊆DE,若對于任意x∈DJ,都有g(shù)(x)=f(x),則稱g(x)函數(shù)為f(x)在DE上的一個延拓函數(shù).設(shè)f(x)=e-x(x-1)(x>0),g(x)為f(x)在R上的一個延拓函數(shù),且g(x)是奇函數(shù).給出以下命題:
①當(dāng)x<0時,g(x)=e-x(1-x);          
②函數(shù)g(x)有3個零點;
③g(x)>0的解集為(-1,0)∪(1,+∞);      
④?x1,x2∈R,都有|g(x1)-g(x2)|≤2.
其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,an+1=
n+1
2n
an

(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn為數(shù)列{an}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,若3b=2a,則
sin2A-2sin2B
sin2B
的值為( 。
A、-
14
9
B、
1
4
C、1
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的( 。
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x2-ax+2)的定義域為A.
(1)若2∈A,-2∉A,求實數(shù)a的范圍;
(2)若函數(shù)y=f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=x的焦點為F,點P(x,y)為該拋物線上的動點,又點A(-
1
4
,0)
,則
|PF|
|PA|
的最小值是( 。
A、
2
3
3
B、
3
2
C、
2
2
D、
1
2

查看答案和解析>>

同步練習(xí)冊答案