已知函數(shù)(其中A>0,)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域;

 ,[—1,2]


解析:

解:(1)由最低點(diǎn)為………………2分

由x軸上相鄰的兩個交點(diǎn)之間的距離為

=2……………………2分

由點(diǎn)在圖像上的= —2,

,………………………………2分

…………………………1分

(2)

……………………2分

當(dāng),即時,取得最大值2;…………………2分

當(dāng)時,取得最小值—1……………………2分

的值域?yàn)閇—1,2]……………………1分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中a為大于零的常數(shù).
(I)若函數(shù)f(x)在區(qū)間[1,+∞)內(nèi)單調(diào)遞增,求a的取值范圍;
(II)設(shè)函數(shù)數(shù)學(xué)公式,若存在x0∈[1,e],使不等式g(x0)≥lnx0成立,求實(shí)數(shù)p的取值范圍.(e為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省萊蕪市鳳城高中高三(上)第三次質(zhì)量檢測數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都外國語學(xué)校高三(下)4月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省岳陽市炎陵一中高三第六次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線x-y-1=0是曲線y=f(x)的切線,求實(shí)數(shù)a的值;
(Ⅲ)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最大值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案