若4sin2x-6sinx-cos2x+3cosx=0.求:
cos2x-sin2x
(1-cos2x)(1-tan2x)
的值.
考點:三角函數(shù)中的恒等變換應用
專題:三角函數(shù)的求值
分析:由已知條件化簡可得cosx=2sinx,要求的式子可化為
cos2x-sin2x
1-cos2x+sin2x
,代入計算即可.
解答: 解:∵4sin2x-6sinx-cos2x+3cosx=0,
∴4sin2x-cos2x-6sinx+3cosx=0,
∴(2sinx+cosx)(2sinx-cosx)-3(2sinx-cosx)=0,
∴(2sinx-cosx)(2sinx+cosx-3)=0,
∵2sinx+cosx≤
5
,∴2sinx+cosx-3≠0,
∴2sinx-cosx=0,即cosx=2sinx,
cos2x-sin2x
(1-cos2x)(1-tan2x)
=
cos2x-sin2x
(1-cos2x)(1-
sin2x
cos2x
)

=
cos2x-sin2x
(1-cos2x)
cos2x-sin2x
cos2x
=
cos2x
1-cos2x

=
cos2x-sin2x
1-cos2x+sin2x
=
(2sinx)2-sin2x
sin2x+sin2x
=
3
2
點評:本題考查三角函數(shù)的化簡,熟記公式是解決問題的關鍵,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若a-2i=b+ai,其中a、b∈R,i是虛數(shù)單位,則a+b=( 。
A、-4B、4C、0D、數(shù)值不定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z=
2
1-i
,則
.
z
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy上取兩個定點A1(-2,0),A2(2,0),再取兩個動點N1(0,m),N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點的軌跡M的方程;
(2)已知點G(1,0)和G′(-1,0),點P在軌跡M上運動,現(xiàn)以P為圓心,PG為半徑作圓P,試探究是否存在一個以點G′(-1,0)為圓心的定圓,總與圓P內切?若存在,求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
2
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(其中O為坐標原點),求整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x),n∈N*
(1)請寫出fn(x)的表達式(不需要證明),并求fn(x)的極小值;
(2)設gn(x)=-x2-2(n+1)-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,證明:a-b≥e-4;
(3)設φ(x)=x2+a|ln[f0(x)]-x-1|,(a>0),若φ(x)≥
3
2
a,x∈[1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°PA⊥平面,PA=4,AD=2,AB=2
3
,BC=6.
(Ⅰ)求證:BD⊥平面PAC
(Ⅱ)求二面角P-BD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零向量
a
,
b
,
c
滿足
a
+
b
+
c
=0,向量
a
b
的夾角為120°,且|
b
|=2|
a
|,求向量
a
c
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是橢圓E:
x2
a2
+y2=1(a>1)的左、右焦點,A,B分別為橢圓的上、下頂點,若F2到直線AF1的距離為
2

(1)求橢圓E的方程;
(2)過橢圓的右頂點C的直線l與橢圓交于點D(點D不同于點C),交y軸于點P(點P不同于坐標原點O),直線AD與BC交于點Q,試判斷
OP
OQ
是否為定值,并證明你的結論.

查看答案和解析>>

同步練習冊答案