若函數(shù),在上是減少的,則的取值范圍是    

 

【答案】

a≤3

【解析】

試題分析:因?yàn)楹瘮?shù),在上是減少的,所以

考點(diǎn):二次函數(shù)的單調(diào)性。

點(diǎn)評:我們研究二次函數(shù)的單調(diào)性和最值時一定要考慮它的開口方向。①最大(。┲担寒(dāng)a>0時,函數(shù)圖象開口向上,y有最小值,,無最大值;當(dāng)a<0時,函數(shù)圖象開口向下,y有最大值,,無最小值。②當(dāng)a>0時,函數(shù)在區(qū)間上是減函數(shù),在上是增函數(shù);當(dāng)a<0時,函數(shù)在區(qū)間上是減函數(shù),在上是增函數(shù)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2ax+3在區(qū)間(-∞,-1)上是減少的,在區(qū)間(1,+∞)上是增加的,則實(shí)數(shù)a的取值范圍是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=
1+kx
在區(qū)間(0,+∞)上是減少的,則實(shí)數(shù)k的取值范圍是
(-1,+∞)
(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,設(shè)命題p:函數(shù)y=logax在x∈(0,+∞)上是減少的;命題q:方程x2+ax+1=0有不等的兩個實(shí)數(shù)解.若“p或q”為真,“p且q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層(即x=0時),每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求k的值;

(2)求f(x)的表達(dá)式;

(3)利用“函數(shù)(其中為大于0的常數(shù)),在上是減函數(shù),在上是增函數(shù)”這一性質(zhì),求隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求出這個最小值.

 

查看答案和解析>>

同步練習(xí)冊答案