【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣場(chǎng)的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場(chǎng)的銷售情況,得到如圖所示的莖葉圖. 為了鼓勵(lì)賣場(chǎng),在同型號(hào)電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場(chǎng)命名為該型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”.
(1)求在這10個(gè)賣場(chǎng)中,甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”的個(gè)數(shù);
(2)若在這10個(gè)賣場(chǎng)中,乙型號(hào)電視機(jī)銷售量的平均數(shù)為26.7,求a>b的概率;
(3)若a=1,記乙型號(hào)電視機(jī)銷售量的方差為,根據(jù)莖葉圖推斷b為何值時(shí),達(dá)到最值.
(只需寫出結(jié)論)
【答案】(1)5(2)(3),達(dá)到最小值
【解析】試題分析:(1)由莖葉圖和平均數(shù)的定義可得,即可得到符合“星際賣場(chǎng)”的個(gè)數(shù)
記事件為,由題意和平均數(shù)可得,列舉可得和的取值共9種情況,其中滿足的共4種情況,由概率公式即可得到所求答案。
根據(jù)方差公式,只需時(shí),達(dá)到最小值
試題解析:(1)解:根據(jù)莖葉圖,
得甲組數(shù)據(jù)的平均數(shù)為,
由莖葉圖,知甲型號(hào)電視機(jī)的“星級(jí)賣場(chǎng)”的個(gè)數(shù)為.
(2)解:記事件A為, 因?yàn)橐医M數(shù)據(jù)的平均數(shù)為26.7,
所以,
解得.
所以和取值共有9種情況,它們是:,,,,,,,,,其中有4種情況,它們是:,,,, 所以的概率.
(3)解:當(dāng)時(shí),達(dá)到最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.
下列命題:
①“囧函數(shù)”的值域?yàn)?/span>;
②“囧函數(shù)”在上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于軸對(duì)稱;
④“囧函數(shù)”有兩個(gè)零點(diǎn);
⑤“囧函數(shù)”的圖象與直線
至少有一個(gè)交點(diǎn).正確命題的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(4, 0),B(2, 2),C (6, 0),記△ABC的外接圓為⊙P.
(1)求⊙P的方程.
(2)對(duì)于線段PA上的任意一點(diǎn)G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點(diǎn)E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線(為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.
(1)求曲線與的交點(diǎn)的直角坐標(biāo);
(2)設(shè)點(diǎn), 分別為曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,
(1)若函數(shù)的兩個(gè)極值點(diǎn)為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖象過點(diǎn)的切線方程;
(3)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的1000位上網(wǎng)購物者的年齡情況如圖.
(1)已知、,三個(gè)年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求,的值;
(2)該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放50元的代金券,潛在消費(fèi)人群每人發(fā)放80元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取了10人,現(xiàn)在要在這10人中隨機(jī)抽取3人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com