【題目】選修4﹣﹣4;坐標(biāo)系與參數(shù)方程
已知?jiǎng)狱c(diǎn)P,Q都在曲線C: 上,對(duì)應(yīng)參數(shù)分別為β=α與β=2α(0<α<2π),M為PQ的中點(diǎn).
(1)求M的軌跡的參數(shù)方程
(2)將M到坐標(biāo)原點(diǎn)的距離d表示為α的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點(diǎn).
【答案】
(1)解:根據(jù)題意有:P(2cosα,2sinα),Q(2cos2α,2sin2α),
∵M(jìn)為PQ的中點(diǎn),故M(cosα+cos2α,sin2α+sinα),
∴求M的軌跡的參數(shù)方程為: (α為參數(shù),0<α<2π).
(2)解:M到坐標(biāo)原點(diǎn)的距離d= = (0<α<2π).
當(dāng)α=π時(shí),d=0,故M的軌跡過坐標(biāo)原點(diǎn).
【解析】(1)根據(jù)題意寫出P,Q兩點(diǎn)的坐標(biāo):P(2cosα,2sinα),Q(2cos2α,2sin2α),再利用中點(diǎn)坐標(biāo)公式得PQ的中點(diǎn)M的坐標(biāo),從而得出M的軌跡的參數(shù)方程;(2)利用兩點(diǎn)間的距離公式得到M到坐標(biāo)原點(diǎn)的距離d= = ,再驗(yàn)證當(dāng)α=π時(shí),d=0,故M的軌跡過坐標(biāo)原點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面斜坐標(biāo)系中,,平面上任意一點(diǎn)關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若(其中,分別為與軸,軸同方向的單位向量),則點(diǎn)的斜坐標(biāo)為
(1)若點(diǎn)在斜坐標(biāo)系中的坐標(biāo)為,求點(diǎn)到原點(diǎn)的距離.
(2)求以原點(diǎn)為圓心且半徑為的圓在斜坐標(biāo)系中的方程.
(3)在斜坐標(biāo)系中,若直線交(2)中的圓于兩點(diǎn),則當(dāng)為何值時(shí),的面積取得最大值?并求此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直二面角中,四邊形是邊長(zhǎng)為2的正方形,,為上的點(diǎn),且平面.
(1)求證:;
(2)求二面角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.
(1)求過點(diǎn)且與圓相切的直線方程;
(2)過點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓交軸正半軸于點(diǎn),求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行程序框圖,如果輸入的t∈[﹣1,3],則輸出的s屬于( )
A.[﹣3,4]
B.[﹣5,2]
C.[﹣4,3]
D.[﹣2,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形所在的平面與長(zhǎng)方形所在的平面垂直,.點(diǎn)是邊的中點(diǎn),點(diǎn)分別在線段,上,且.
(1)證明:;
(2)求二面角的正切值;
(3)求直線與直線PG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上的值域?yàn)?/span>,則稱區(qū)間為函數(shù)的一個(gè)“倒值區(qū)間”.定義在上的奇函數(shù),當(dāng)時(shí),
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在上的“倒值區(qū)間”;
(Ⅲ)記函數(shù)在整個(gè)定義域內(nèi)的“倒值區(qū)間”為,設(shè),則是否存在實(shí)數(shù),使得函數(shù)的圖像與函數(shù)的圖像有兩個(gè)不同的交點(diǎn)?若存在,求出的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,焦點(diǎn)在x軸上的橢圓C: =1經(jīng)過點(diǎn)(b,2e),其中e為橢圓C的離心率.過點(diǎn)T(1,0)作斜率為k(k>0)的直線l交橢圓C于A,B兩點(diǎn)(A在x軸下方).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)O且平行于l的直線交橢圓C于點(diǎn)M,N,求 的值;
(3)記直線l與y軸的交點(diǎn)為P.若 = ,求直線l的斜率k.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com