設(shè)函數(shù)f(x)=x2-|x|-k2,下列判斷:
①存在實(shí)數(shù)k,使得函數(shù)f(x)有且僅有一個(gè)零點(diǎn);
②存在實(shí)數(shù)k,使得函數(shù)f(x)有且僅有兩個(gè)零點(diǎn);
③存在實(shí)數(shù)k,使得函數(shù)f(x)有且僅有三個(gè)零點(diǎn);
④存在實(shí)數(shù)k,使得函數(shù)f(x)有且僅有四個(gè)零點(diǎn).
其中正確的是
②③
②③
(填相應(yīng)的序號).
分析:將方程x2-|x|-k2=0的問題轉(zhuǎn)化成函數(shù)y=x2-|x|與函數(shù)y=k2圖象的交點(diǎn)問題,畫出圖象可得.
解答:解:關(guān)于x的方程x2-|x|-k2=0,可化為x2-|x|=k2. 
分別畫出函數(shù)y=x2-|x|和y=k2的圖象,如圖所示:
由圖可知,它們的交點(diǎn)情況是:恰有2,或3個(gè)不同的交點(diǎn).
當(dāng)k=0時(shí),函數(shù)y=x2-|x|和y=k2的圖象又3個(gè)交點(diǎn),函數(shù)f(x)有且僅有三個(gè)零點(diǎn).
當(dāng)k≠0時(shí),函數(shù)y=x2-|x|和y=k2的圖象又2個(gè)交點(diǎn),函數(shù)f(x)有且僅有2個(gè)零點(diǎn).
故答案為 ②③.
點(diǎn)評:本題考查了根的存在性及根的個(gè)數(shù)判斷,以及函數(shù)與方程的思想,解答關(guān)鍵是運(yùn)用數(shù)形結(jié)合的思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊答案