【題目】隨著我國(guó)居民生活水平的不斷提高,汽車逐步進(jìn)入百姓家庭,但隨之面來的交通擁堵和交通事故時(shí)有發(fā)生,給人民的生活也帶來了諸多不便.某市為了確保交通安全.決定對(duì)交通秩序做進(jìn)步整頓,對(duì)在通路上行駛的前后相鄰兩機(jī)動(dòng)車之間的距離d(米)與機(jī)動(dòng)車行駛速度v(千米/小時(shí))做出如下兩條規(guī)定:
①av2;
②.(其中a是常量,表示車身長(zhǎng)度,單位:米)
(1)當(dāng)時(shí).求機(jī)動(dòng)車的最大行駛速度;
(2)設(shè)機(jī)動(dòng)車每小時(shí)流量Q,問當(dāng)機(jī)動(dòng)車行駛速度v≥30(千米/小時(shí))時(shí),機(jī)動(dòng)車以什么樣的狀態(tài)行駛,能使機(jī)動(dòng)車每小時(shí)流量Q最大?并說明理由.(機(jī)動(dòng)車每小時(shí)流量Q是指每小時(shí)通過觀測(cè)點(diǎn)的車輛數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線與軸相交于點(diǎn),且.
(1)求證:;
(2)求點(diǎn)的橫坐標(biāo);
(3)過點(diǎn)分別作拋物線的切線,兩條切線交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
①命題“若 ,則 ”的否命題是假命題;
②命題 ,使 ,則 ;
③“ ”是“函數(shù) 為偶函數(shù)”的充要條件;
④命題 “ ,使 ”,命題 “在 中,若 ,則 ”,那么命題為真命題.
其中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 f(x)=(x﹣1)ex﹣ax2..
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若在處取得極大值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的兩個(gè)焦點(diǎn)分別為和,短軸的兩個(gè)端點(diǎn)分別為和,點(diǎn)在橢圓上,且滿足,當(dāng)變化時(shí),給出下列三個(gè)命題:
①點(diǎn)的軌跡關(guān)于軸對(duì)稱;②的最小值為2;
③存在使得橢圓上滿足條件的點(diǎn)僅有兩個(gè),
其中,所有正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖場(chǎng)需要通過某裝置對(duì)養(yǎng)殖車間進(jìn)行恒溫控制,為了解日用電量與日平均氣溫(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某5天的用電量與當(dāng)天平均氣溫,并制作了對(duì)照表:
日平均氣溫(℃) | 3 | 4 | 5 | 6 | 7 |
日用電量() | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)請(qǐng)利用(Ⅰ)中的線性回歸方程預(yù)測(cè)日平均氣溫為12℃時(shí)的日用電量.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:的右準(zhǔn)線方程為x=4,右頂點(diǎn)為A,上頂點(diǎn)為B,右焦點(diǎn)為F,斜率為2的直線l經(jīng)過點(diǎn)A,且點(diǎn)F到直線l的距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)將直線l繞點(diǎn)A旋轉(zhuǎn),它與橢圓C相交于另一點(diǎn)P,當(dāng)B,F,P三點(diǎn)共線時(shí),試確定直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,.
(1)求證:平面;
(2)在棱上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com