設數(shù)列{an}的前n項和偉Sn,對一切n∈N+,點(n,Sn)在函數(shù)f(x)=x2+x的圖象上.
(1)求an的表達式;
(2)將數(shù)列{an}依次按1項,2項循環(huán)地分為(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),…,分別計算各個括號內(nèi)各數(shù)之和,設由這些和按原來括號的前后順序構成的數(shù)列為{bn},求b100的值.

解:(1)點(n,Sn)在函數(shù)f(x)=x2+x的圖象上
∴Sn=n2+n …(2分)
an=Sn-Sn-1=n(n+1)-n(n-1)=2n(n≥2)
∵a1=S1=2適合上式????
故an=2n
(2)數(shù)列{an}依次按1項,2項循環(huán)地分為(2),(4,6),(8),(10,12);(14),(16,18);(20),…,每一次循環(huán)記為一組.由于每一個循環(huán)含有2個括號,故b100是第50組中第2個括號內(nèi)各數(shù)之和.
由分組規(guī)律知,b2,b4,b6,…b100組成首項為b2=4+6=10,公差d=12的等差數(shù)列. …(12分)
所以b100=10+(50-1)×12=598 …(14分)
分析:(1)由點(n,Sn)在函數(shù)f(x)=x2+x的圖象上可得Sn=n2+2n
利用遞推公式可求.
(2)由分組規(guī)律知,b2,b4,b6,…b100組成首項為b2=4+6=10,公差d=12的等差數(shù)列,利用等差數(shù)列的通項公式可求
點評:本題主要考查了利用遞推公式求數(shù)列的通項公式,注意不要漏掉對n=1的檢驗
,還考查了等差數(shù)列的通項公式的應用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習冊答案