已知圓C:x2+(y-3)2=4,一動直線l過A(-1,0)與圓C相交于P、Q兩點,
M是PQ中點,l與直線m:x+3y+6=0相交于N.
(1)求證:當l與m垂直時,l必過圓心C;
(2)當PQ=2時,求直線l的方程;
(3)探索·是否與直線l的傾斜角有關?若無關,請求出其值;若有關,請說明理由.
(1)見解析(2)x=-1或4x-3y+4=0.(3)-5
【解析】(1)證明:∵l與m垂直,且km=-,
∴kl=3.又kAC=3,所以當l與m垂直時,l的方程為y=3(x+1),l必過圓心C.
(2)【解析】
①當直線l與x軸垂直時,易知x=-1符合題意.②當直線l與x軸不垂直時,設直線l的方程為y=k(x+1),即kx-y+k=0.因為PQ=2,所以CM==1,則由CM==1,得k=,∴直線l:4x-3y+4=0.從而所求的直線l的方程為x=-1或4x-3y+4=0.
(3)【解析】
∵CM⊥MN,∴·=(+)·=·+·=·.
①當l與x軸垂直時,易得N,則=.又=(1,3),∴·=·=-5;②當l的斜率存在時,設直線l的方程為y=k(x+1),則由
得N,則=.
∴·=·==-5.
綜上,·與直線l的斜率無關,且·=-5.
另【解析】
連結CA并延長交m于點B,連結CM,CN,由題意知AC⊥m,又CM⊥l,∴四點M、C、N、B都在以CN為直徑的圓上,由相交弦定理,得·=-|AM|·|AN|=-|AC|·|AB|=-5.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第8課時練習卷(解析版) 題型:填空題
已知雙曲線x2-y2=1,點F1,F(xiàn)2為其兩個焦點,點P為雙曲線上一點,若PF1⊥PF2,則PF1+PF2=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題
已知F1、F2是橢圓C的左、右焦點,點P在橢圓上,且滿足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題
若直線y=x+b與曲線y=3-有公共點,則b的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題
在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題
若圓x2+y2=1與直線y=kx+2沒有公共點,則實數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題
圓x2+y2-4x=0在點P(1,)處的切線方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題
點(1,1)在圓(x-a)2+(y+a)2=4內,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題
已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1)當直線AM的斜率為1時,求點M的坐標;
(2)當直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com