精英家教網 > 高中數學 > 題目詳情
設函數y=sin(?x+φ)的最小正周期為π,且其圖象關  于直線對稱,則在下面四個結論:
①圖象關于點對稱;
②圖象關于點對稱,
③在上是增函數中,
所有正確結論的編號為   
【答案】分析:首先由三角函數周期公式和對稱軸方程,求出ω和φ的值,然后再由三角函數圖象關于對稱性的規(guī)律:對稱軸處取最值,對稱中心為零點.再結合函數的周期,逐個驗證易得答案.
解答:解:因為函數最小正周期為=π,解得ω=2,
再根據圖象關于直線x=對稱,得出2x+φ=+kπ,k∈Z,
取x=和k=1,得φ=,所以函數表達式為:y=sin(2x+
當x=時,函數值f()=0,因此函數圖象關于點(,0)對稱,
所以②是正確的,①是錯誤的;
由不等式:2kπ<2x+<+2kπ   (k∈Z)
解得得函數的增區(qū)間為:(-+kπ,+kπ)(k∈Z),
當k=1時,可得函數的增區(qū)間為(-,),故③錯誤
故答案為:②
點評:本題考查三角函數的周期性、對稱性和單調性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,a2-c2=
3
ab-b2
,S△ABC=2.
(1)求
CA
CB
的值;
(2)設函數y=sin(ωx+φ),(其中φ∈[0,
π
2
],ω>0)
,最小正周期為π,當x等于角C時函數取到最大值,求使該函數取最小值時的x的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=sin(2x+
π3
)
,若對任意x∈R,存在x1,x2使f(x1)≤f(x)≤f(x2)恒成立,則|x1-x2|的最小值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=sin(?x+φ)(?>0,φ∈(-
π
2
,
π
2
))
的最小正周期為π,且其圖象關  于直線x=
π
12
對稱,則在下面四個結論:
①圖象關于點(
π
4
,0)
對稱;
②圖象關于點(
π
3
,0)
對稱,
③在[0,
π
6
]
上是增函數中,
所有正確結論的編號為

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•海淀區(qū)二模)設函數y=sin(ωx+?)(ω>0,?∈(-
π
2
,
π
2
))
的最小正周期為π,且其圖象關于直線x=
π
12
對稱,則在下面四個結論中:
(1)圖象關于點(
π
4
,0)
對稱;
(2)圖象關于點(
π
3
,0)
對稱;
(3)在[0,
π
6
]
上是增函數;
(4)在[-
π
6
,0]
上是增函數,
那么所有正確結論的編號為
(2)(4)
(2)(4)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年新疆烏魯木齊一中高三(上)第一次月考數學試卷(理科)(解析版) 題型:填空題

設函數y=sin(?x+φ)的最小正周期為π,且其圖象關  于直線對稱,則在下面四個結論:
①圖象關于點對稱;
②圖象關于點對稱,
③在上是增函數中,
所有正確結論的編號為   

查看答案和解析>>

同步練習冊答案