設(shè)a=
π
0
(sinx-1+2cos2
x
2
)dx
,則多項式(a
x
-
1
x
6•(x2+2)的常數(shù)項是
 
分析:先求得二項式展開式的通項公式,再令x的冪指數(shù)等于3,求得r的值,即可求得常數(shù)項的值.
解答:解:設(shè)a=
π
0
(sinx-1+2cos2
x
2
)dx
=
π
0
(sinx+cosx)dx
=(-cosx+sinx)
|
π
0
=1+1=2,
則多項式(a
x
-
1
x
6•(x2+2)=(2
x
-
1
x
6•(x2+2)
=[
C
0
6
(2
x
)
6
(
-1
x
)
0
+
C
1
6
•(2
x
)
5
•(
-1
x
)
1
+
C
2
6
•(2
x
)
4
•(
-1
x
)
2
+…+
C
6
6
•(2
x
)
0
•(
-1
x
)
6
](x2+2),
故展開式的常數(shù)項為-
C
5
6
×2×1-
C
3
6
•23
×2=-12-320=-332,
故答案為:-332.
點評:本題主要考查二項式定理的應(yīng)用,二項式展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(1-cosα,sinα),
b
=(1+cosβ,sinβ),
c
=(1,0),α、β∈(0,π),
a
c
的夾角為θ1,
b
c
的夾角為θ2,且θ12=
π
3

(1)求cos(α+β)的值;(2)設(shè)
OA
=
a
,
OB
=
b
OD
=
d
,且
a
+
b
+
d
=3
c
求證:△ABD是正三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ω>0,函數(shù)y=sin(ωx+
π
3
)-1
的圖象向左平移
3
個單位后與原圖象重合,則ω的最小值是( 。
A、
2
3
B、
4
3
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=logsinθx,θ∈(0,
π
2
)
,設(shè)a=f(
sinθ+cosθ
2
)
,b=f(
sinθ•cosθ
)
c=f(
sin2θ
sinθ+cosθ
)
,那么a、b、c的大小關(guān)系是
a≤b≤c
a≤b≤c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
b
的夾角為θ,定義
a
b
的“向量積”:
a
×
b
是一個向量,它的模為|
a
×
b
|=|
a
|•|
b
|•sinθ
.若
a
=(-1,1)
,
b
=(0,2)
,則|
a
×
b
|
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)角α的終邊過點P(5a,12a)(a≠0),則sinα=
±
12
13
±
12
13

查看答案和解析>>

同步練習(xí)冊答案