【題目】若函數(shù)(,是自然對(duì)數(shù)的底數(shù),)存在唯一的零點(diǎn),則實(shí)數(shù)的取值范圍為______.
【答案】
【解析】
函數(shù)存在唯一的零點(diǎn)等價(jià)于函數(shù)與函數(shù)的圖像只有一個(gè)交點(diǎn).∵,,∴函數(shù)與函數(shù)的圖像的唯一交點(diǎn)為.對(duì)求導(dǎo),可得的單調(diào)性及斜率范圍,又是最小正周期為2.最大值為的正弦型函數(shù),畫出草圖,比較與在x=1處斜率即可.
函數(shù)(,是自然對(duì)數(shù)的底數(shù),)存在唯一的零點(diǎn)等價(jià)于函數(shù)與函數(shù)的圖像只有一個(gè)交點(diǎn).
∵,,
∴函數(shù)與函數(shù)的圖像的唯一交點(diǎn)為.
又∵,且,,
∴在上恒小于零,即在上為單調(diào)遞減函數(shù).
又∵,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,且是最小正周期為2.最大值為的正弦型函數(shù),
∴可得函數(shù)與函數(shù)的大致圖像如圖所示.
∴要使函數(shù)與函數(shù)的圖像只有唯一一個(gè)交點(diǎn),則.
∵,,
∴,解得.
對(duì)∵,∴實(shí)數(shù)的取值范圍為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的右焦點(diǎn)、右頂點(diǎn)分別為F,A,過原點(diǎn)的直線與橢圓C交于點(diǎn)P、Q(點(diǎn)P在第一象限內(nèi)),連結(jié)PA,QF.若,的面積是面積的3倍.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知M為線段PA的中點(diǎn),連結(jié)QA,QM.
①求證:Q,F,M三點(diǎn)共線;
②記直線QP,QM,QA的斜率分別為,,,若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,,,,,點(diǎn)是線段的中點(diǎn),將,分別沿,
向上折起,使,重合于點(diǎn),得到三棱錐.試在三棱錐中,
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列是公比不為1的等比數(shù)列,且滿足,,
(1)求數(shù)列,的通項(xiàng)公式;
(2)令,記數(shù)列的前n項(xiàng)和為,求證:對(duì)任意的,都有;
(3)若數(shù)列滿足,,記,是否存在整數(shù),使得對(duì)任意的 都有成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科研人員在對(duì)人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡(jiǎn)單隨機(jī)樣本數(shù)據(jù),如下表:
(年齡/歲) | 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
(脂肪含量/%) | 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:
(i)求;
(i)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量.
附:參考數(shù)據(jù):,,,,,,
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線經(jīng)過坐標(biāo)原點(diǎn),曲線的參數(shù)方程為(為參數(shù)).以點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求與的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為、,與的交點(diǎn)為、,且,求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,某年國家對(duì)消費(fèi)者購買新能源汽車給予補(bǔ)貼,其中對(duì)純電動(dòng)乘用車補(bǔ)貼標(biāo)準(zhǔn)如下表:
新能源汽車補(bǔ)貼標(biāo)準(zhǔn) | |||
車輛類型 | 續(xù)駛里程 | ||
純電動(dòng)乘用車 | 3.5萬元/輛 | 5萬元/輛 | 6萬元/輛 |
某校研究學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)選取了輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了如下的頻率與頻數(shù)的統(tǒng)計(jì)表:
分組 | 頻數(shù) | 頻率 |
2 | 0.2 | |
5 | ||
合計(jì) | 1 |
(1)若從這輛純電動(dòng)乘用車中任選2輛,求選到的2輛車?yán)m(xù)駛里程都不低于150km的概率.
(2)若以頻率作為概率,設(shè)為購買一輛純電動(dòng)乘用車獲得的補(bǔ)貼,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日晷是中國古代用來測(cè)定時(shí)間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測(cè)定時(shí)間.把地球看成一個(gè)球(球心記為O),地球上一點(diǎn)A的緯度是指OA與地球赤道所在平面所成角,點(diǎn)A處的水平面是指過點(diǎn)A且與OA垂直的平面.在點(diǎn)A處放置一個(gè)日晷,若晷面與赤道所在平面平行,點(diǎn)A處的緯度為北緯40°,則晷針與點(diǎn)A處的水平面所成角為( )
A.20°B.40°
C.50°D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對(duì)市中心每天的環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時(shí)刻(時(shí))的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達(dá)式,并規(guī)定當(dāng)時(shí)為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時(shí),該市市中心的綜合污染指數(shù)不超標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com