【題目】如圖都是由邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第個幾何體的表面積是__________個平方單位.
【答案】
【解析】
試題1. 從上向下看,每層頂面的面?zhèn)數(shù)為:第一層是1,第二層是2,第三層是3………第五層是5,共5個面;
2. 左邊和右邊還有底面 的面積相等,5層時為,1+2+3+4+5=15個面
3. 剩下最后2個面了,這2個面的特征就是都有一個角,一個角有3個面,一共有第一層1個角,第二層2角,第三層3個角……第五層5個角,共有1+2+3+4+5=15個角,45個面;
4. 計算:1層時=6
2層時=(1+2)×3 + (1+2)×3 = 9+9=18
3層時=(1+2+3)×3 + (1+2+3)×3=18+18=36
第n層時為(1+2+3+……+n)×3 + (1+2+3+……+n)×3
也就是6×(1+2+3+……+n)
所以當n=5是,表面積為6×15=90
故第個幾何體的表面積是個平方單位
科目:高中數(shù)學 來源: 題型:
【題目】定義:從數(shù)列中抽取項按其在中的次序排列形成一個新數(shù)列,則稱為的子數(shù)列;若成等差(或等比),則稱為的等差(或等比)子數(shù)列.
(1)記數(shù)列的前項和為,已知.
①求數(shù)列的通項公式;
②數(shù)列是否存在等差子數(shù)列,若存在,求出等差子數(shù)列;若不存在,請說明理由.
(2)已知數(shù)列的通項公式為,證明:存在等比子數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù),使其值域為,則稱函數(shù)是函數(shù)的“漸近函數(shù)”.
(1)求證:函數(shù)不是函數(shù)的“漸近函數(shù)”;
(2)判斷函數(shù)是不是函數(shù),的“漸近函數(shù)”,并說明理由;
(3)若函數(shù),,,求證:是函數(shù)的“漸近函數(shù)”充要條件是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的6月8日確定為“世界海洋日”.2019年6月8日,某大學的行政主管部門從該大學隨機抽取100名大學生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:
(1)求實數(shù)的值;
(2)若從第四組、第五組的學生中按組用分層抽樣的方法抽取6名學生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面上給定相異兩點A,B,設P點在同一平面上且滿足,當且時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線(,),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足,面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。
(1)求直線的普通方程和圓的直角坐標方程;
(2)設圓與直線交于,兩點,若點的坐標為,求。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為,且圓與軸交于兩點,設直線的方程為.
(1)當直線與圓相切時,求直線的方程;
(2)已知直線與圓相交于兩點.(i),求直線的方程;(ii)直線與直線相交于點,直線,直線,直線的斜率分別為,,,是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.
(參考公式:線性回歸方程中的估計值分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>