【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,
【答案】(1);(2),6.1百千克.
【解析】
(1)直接利用相關(guān)系數(shù)的公式求相關(guān)系數(shù),再根據(jù)相關(guān)系數(shù)的大小判斷可用線性回歸模型擬合與的關(guān)系.(2)利用最小二乘法求回歸方程,再利用回歸方程預(yù)測(cè)得解.
(1)由已知數(shù)據(jù)可得,.
所以,
,
,
所以相關(guān)系數(shù).
因?yàn)?/span>,所以可用線性回歸模型擬合與的關(guān)系.
(2).
那么.
所以回歸方程為.
當(dāng)時(shí),,
即當(dāng)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為6.1百千克.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,直線被圓截得的弦長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo)和的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,同時(shí)滿足:對(duì)任意,總有,對(duì)定義域內(nèi)的,若滿足,恒有成立,則函數(shù)稱(chēng)為“函數(shù)”.
(1)判斷函數(shù)在區(qū)間上是否為“函數(shù)”,并說(shuō)明理由;
(2)當(dāng)為“函數(shù)”時(shí),求的最大值和最小值;
(3)已知為“函數(shù)”:
①證明:;
②證明:對(duì)一切,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為2的正方體中,,分別為棱、的中點(diǎn),為棱上的一點(diǎn),且,設(shè)點(diǎn)為的中點(diǎn),則點(diǎn)到平面的距離為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為且過(guò)點(diǎn)橢圓C與軸的交點(diǎn)為A、B(點(diǎn)A位于點(diǎn)B的上方),直線與橢圓C交于不同的兩點(diǎn)M、N(點(diǎn)M位于點(diǎn)N的上方).
(1)求橢圓C的方程;
(2)求△OMN面積的最大值;
(3)求證:直線AN和直線BM交點(diǎn)的縱坐標(biāo)為常值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次田徑比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示。
若將運(yùn)動(dòng)員按成績(jī)由好到差編為1—35號(hào),再用系統(tǒng)抽樣方法從中抽取5人,則其中成績(jī)?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)為
A.6B.5C.4D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認(rèn)為正確的序號(hào)全部寫(xiě)上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱(chēng)軸為x軸,其準(zhǔn)線過(guò)點(diǎn).
(1)求拋物線C的方程;
(2)過(guò)拋物線焦點(diǎn)F作直線l,使得拋物線C上恰有三個(gè)點(diǎn)到直線l的距離都為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列各項(xiàng)均非零,且存在常數(shù),對(duì)任意,恒成立,則成這樣的數(shù)列為“類(lèi)等比數(shù)列”,例如等比數(shù)列一定為類(lèi)等比數(shù)列,則:
(1)各項(xiàng)均非零的等差數(shù)列是否可能為“類(lèi)等比數(shù)列”?若可能,請(qǐng)舉例;若不能,說(shuō)明理由;
(2)已知數(shù)列為“類(lèi)等比數(shù)列”,且,是否存在常數(shù),使得恒成立?
(3)已知數(shù)列為“類(lèi)等比數(shù)列”,且,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com