若x1,x2分別為三次函數(shù)f(x)=
13
x3-2x2+3x-5
的極大值點和極小值點,則以(x1,0)為頂點,(x2,0)為焦點的雙曲線的離心率e 等于
3
3
分析:求導(dǎo)數(shù),確定函數(shù)的極值點,從而可得雙曲線的頂點與焦點,進而可得雙曲線的離心率.
解答:解:求導(dǎo)函數(shù)可得f′(x)=x2-4x2+3
令f′(x)=x2-4x2+3>0,可得x<1或x>3;令f′(x)=x2-4x2+3<0,可得1<x<3
∴1,3是函數(shù)的極值點
∴(1,0)為雙曲線的頂點,(3,0)為雙曲線的焦點
∴a=1,c=3
e=
c
a
=3
故答案為3.
點評:本題考查導(dǎo)數(shù)知識的運用,考查雙曲線的幾何性質(zhì),考查學生的計算的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若x1,x2分別為三次函數(shù)f(x)=
1
3
x3-2x2+3x-5
的極大值點和極小值點,則以(x1,0)為頂點,(x2,0)為焦點的雙曲線的離心率e 等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省衡水中學高三(上)第一次調(diào)研數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②,③
中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省泉州一中高三(下)5月月考數(shù)學試卷(理科)(解析版) 題型:填空題

若x1,x2分別為三次函數(shù)的極大值點和極小值點,則以(x1,0)為頂點,(x2,0)為焦點的雙曲線的離心率e 等于   

查看答案和解析>>

同步練習冊答案