精英家教網(wǎng)設(shè)f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)
,
(1)在直角坐標(biāo)系中畫(huà)出f(x)的圖象;
(2)求f[f (-
3
2
)]的值;
(3)若f (x)=3,求x值.
分析:(1)建立直角坐標(biāo)系,分別根據(jù)每段的解析式畫(huà)出圖象;
(2)根據(jù)每段的解析式,分別代入,即可求得f[f (-
3
2
)]的值;
(3)對(duì)x進(jìn)行分類討論,依次列出方程求解,即可求得x的值.
解答:解:(1)作出圖象如圖所示;精英家教網(wǎng)
(2)∵-
3
2
<-1,
∴f(-
3
2
)=-
3
2
+2=
1
2
,
∴f[f (-
3
2
)]=f(
1
2
)=(
1
2
2=
1
4

故f[f (-
3
2
)]的值為
1
4
;
(3)∵f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)
,
①當(dāng)x≤-1時(shí),f(x)=x+2=3,解得x=1,不符合題意;
②當(dāng)-1<x<2時(shí),f(x)=x2=3,解得x=±
3
,
∵-1<x<2,則x=
3

③當(dāng)x≥2時(shí),f(x)=2x=3,解得x=
3
2
,不符合題意;
綜合①②③,可得x=
3
點(diǎn)評(píng):本題考查了分段函數(shù)的解析式及其圖象的作法,考查了分段函數(shù)的取值問(wèn)題,分段函數(shù)的零點(diǎn)問(wèn)題.對(duì)于分段函數(shù)一般選用數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想進(jìn)行解題.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)
,
(1)在下列直角坐標(biāo)系中畫(huà)出f(x)的圖象;
(2)若f(t)=3,求t值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)h(x)=x+
m
x
,x∈[
1
4
,5]
,其中m是不等于零的常數(shù),
(1)(理)寫(xiě)出h(4x)的定義域;
(文)m=1時(shí),直接寫(xiě)出h(x)的值域;
(2)(文、理)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=minf(t)|a≤t≤x(x∈[a,b]),f2(x)=maxf(t)|a≤t≤x(x∈[a,b]).其中,minf(x)|x∈D表示函數(shù)f(x)在D上的最小值,maxf(x)|x∈D表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π].
(理)當(dāng)m=1時(shí),設(shè)M(x)=
h(x)+h(4x)
2
+
|h(x)-h(4x)|
2
,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范圍;
(文)當(dāng)m=1時(shí),|h1(x)-h2(x)|≤n恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(210);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k(2-x),求f(x)在區(qū)間[1,22n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由. ①f(2-n)與2-n+2(n∈N*);②f(x)與2x+2(x∈(2-n,21-n],n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案