已知函數(shù))有兩個零點(diǎn),則的取值范圍是_______.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).如果函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)
有且僅有兩個不動點(diǎn)0、2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知各項(xiàng)不為零的數(shù)列{an}滿足4Sn•f(
1
an
)=1
,求證:-
1
an+1
<ln
n+1
n
<-
1
an
;
(3)設(shè)bn=-
1
an
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2008-1<ln2008<T2007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).如果函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)
有且僅有兩個不動點(diǎn)0和2,且f(-2)<-
1
2

(1)求實(shí)數(shù)b,c的值;
(2)已知各項(xiàng)不為零的數(shù)列{an}的前n項(xiàng)之和為Sn,并且4Sn•f(
1
an
)=1
,求數(shù)列{an}的通項(xiàng)公式;
(3)求證:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在xo∈R,使f(xo)=xo成立,則稱xo為f(x)的不動點(diǎn).如果函數(shù)f(x)=
x2+a
bx-c
(b,c∈N*)有且僅有兩個不動點(diǎn)0和2,且f(-2)<-
1
2

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知各項(xiàng)不為零的數(shù)列{an}滿足4Sn•f(
1
an
)=1,求證:-
1
an+1
<ln
n+1
n
<-
1
an
;
(3)設(shè)bn=-
1
an
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分14分)對于函數(shù)f(x),若存在,使成立,則稱x0f(x)的不動點(diǎn). 如果函數(shù)有且僅有兩個不動點(diǎn)0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項(xiàng)不為零且不為1的數(shù)列{an}滿足,求證:;

(3)設(shè)為數(shù)列{bn}的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶七中高三(上)12月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對于函數(shù)f(x),若存在x∈R,使f(x)=x成立,則稱x為f(x)的不動點(diǎn).如果函數(shù)有且僅有兩個不動點(diǎn)0、2,且
(1)試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知各項(xiàng)不為零的數(shù)列{an}滿足,求證:;
(3)設(shè),Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2008-1<ln2008<T2007

查看答案和解析>>

同步練習(xí)冊答案