用循環(huán)語句描述計算1+
1
2
+
1
22
+
1
23
+…+
1
29
的值的一個程序,要求寫出算法,并用基本語句編寫程序.
考點(diǎn):設(shè)計程序框圖解決實(shí)際問題
專題:常規(guī)題型
分析:本題應(yīng)用累加求和的方法求值,注意語句的格式.
解答: 解:算法分析:
第一步,令s=0,i=0;
第二步,判斷i是否不大于9;若是,s=s+1/2^i,i=i+1;否則進(jìn)入第三步;
第三步,輸出s;程序結(jié)束.
可寫出程序如下:
s=0
i=0
WHILE i<=9
s=s+1/2^i
i=i+1
WEND
PRINT s
END
點(diǎn)評:本題考查了學(xué)生對循環(huán)結(jié)構(gòu)的理解及累加法思想的應(yīng)用;要注意語句的格式是易錯點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)從已編號(1~60)的60個班級中,隨機(jī)抽取6個班級進(jìn)行衛(wèi)生檢查,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選的6個班級的編號可能是( 。
A、6,16,26,36,46,56
B、3,10,17,24,31,38
C、4,11,18,25,32,39
D、5,14,23,32,41,50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x3-3x2sinθ+
1
32
,其中x∈R,θ為參數(shù),且0≤θ<π.
(1)當(dāng)θ=0時,判斷函數(shù)f(x)是否有極值,說明理由;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍;
(3)若對(2)中所求的取值范圍內(nèi)的任意參數(shù)θ,函數(shù)f(x)在區(qū)間(2a-1,a)內(nèi)都是增函數(shù),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex
(Ⅰ)設(shè)函數(shù)g(x)=
a
f(x)
+x
,a∈R,求g(x)的極值.
(Ⅱ)證明:h(x)=f(x)-
1
2
x2-x-1
在R上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-x-lnx,是否存在正實(shí)數(shù)a,使得函數(shù)f(x)的極小值小于0,若存在,求出a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B的大。
(Ⅱ)若b=
3
,則a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c.
(Ⅰ)若f(x)有極值,求b的取值范圍;
(Ⅱ)若f(x)在x=1處取得極值,且f(x)有三個零點(diǎn)時,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx.
(1)若a=2e,求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)在(0,e)上有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.(其中e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

欲修建一橫斷面為等腰梯形(如圖)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時,方能使修建成本最低?

查看答案和解析>>

同步練習(xí)冊答案