分析:由圖表可猜想:第n行的連續(xù)的2n-1個數(shù)的和為:((n-1)2+1)+((n-1)2+2)+…+((n-1)2+2n-1)=(n-1)3+n3.
解答:解:∵等式的左邊第一行一個數(shù)是1,為12;第二行三個數(shù),為2,3,4,最后一個數(shù)是22;第三行五個數(shù),為5,6,7,8,9,最后一個數(shù)是32,…
∴可猜想:第n-1行左端最后一個數(shù)是(n-1)2,右端為:(n-23+(n-1)3,
∴第n行左端第一個數(shù)是(n-1)2+1,有連續(xù)的2n-1個數(shù)相加,等式右端為:(n-1)3+n3,
即:((n-1)2+1)+((n-1)2+2)+…+((n-1)2+2n-1)=(n-1)3+n3.
證明:①當n=1時,左端=1=右端,等式成立;
②假設當n=k時等式成立,即((k-1)2+1)+((k-1)2+2)+…+((k-1)2+2k-1)=(k-1)3+k3,
則當n=k+1時,
([(k+1)-1]2+1)+([(k+1)-1]2+2)+…+([(k+1)-1]2+2k-1)+([(k+1)-1]2+2k)+([(k+1)-1]2+2k+1)
=[((k-1)2+1)+2(k-1)+1]+[((k-1)2+2)+2(k-1)+1]+…+[((k-1)2+2k-1)+2(k-1)+1]+([(k+1)-1]2+2k)+([(k+1)-1]2+2k+1)
=((k-1)2+1)+((k-1)2+2)+…+((k-1)2+2k-1)+[2(k-1)+1](2k-1)+([(k+1)-1]2+2k)+([(k+1)-1]2+2k+1)
=(k-1)3+k3+(2k-1)(2k-1)+k2+2k+k2+2k+1
=k3+[(k-1)3+6k2-4k+4k+2]
=k3+(k3-3k2+3k-1+6k2-4k+4k+2)
=k3+(k3+3k2+3k+1)
=k3+(k+1)3
=[(k+1)-1]3+(k+1)3.
即n=k+1時,等式也成立.
綜合①②可知,對任意n∈N*,((n-1)2+1)+((n-1)2+2)+…+((n-1)2+2n-1)=(n-1)3+n3成立.
點評:本題考查數(shù)學歸納法,考查觀察、猜想能力及論證推理能力,猜想出結論是關鍵,屬于難題.