【題目】校園準備綠化一塊直徑為的半圓形空地,點在半圓圓弧上,△外的地方種草,△的內(nèi)接正方形為一水池(,在邊上),其余地方種花,若, ,設(shè)△的面積為,正方形面積為;
(1)用和表示和;
(2)當固定,變化時,求最小值及此時的角;
【答案】(1),,;(2)最小值為,此時;
【解析】
(1)據(jù)題知三角形為直角三角形,根據(jù)三角函數(shù)分別求出AC和AB,求出三角形ABC的面積;設(shè)正方形的邊長為,利用三角函數(shù)分別表示出BS和AS,利用列出方程求出,算出;
(2)可設(shè)來化簡求出與的比值,利用對勾函數(shù)的增減性求出比值的最小值即可求出此時的.
解:(1)在中,,
,,
設(shè)正方形的邊長為,則,
由,得,故,
所以,;
(2),
令,因為,
所以,則,
所以,
由對勾函數(shù)的單調(diào)性得:函數(shù)在上遞減,
因此當時有最小值,
此時,,
所以當時,最小,最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)的導數(shù)滿足x2<1,則下列不等式中一定成立的是( 。
A.f()+1<f()<f()﹣1B.f()+1<f()<f()﹣1
C.f()﹣1<f()<f()+1D.f()﹣1<f()<f()+1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列命題是否正確(正確的在括號內(nèi)打“√”,錯誤的打“×”).
(1).(________)
(2).(________)
(3).(________)
(4).(________)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點分別是圓心在原點,半徑為和的圓上的動點.動點從初始位置開始,按逆時針方向以角速度作圓周運動,同時點從初始位置開始,按順時針方向以角速度作圓周運動.記時刻,點的縱坐標分別為.
(Ⅰ)求時刻,兩點間的距離;
(Ⅱ)求關(guān)于時間的函數(shù)關(guān)系式,并求當時,這個函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分14分)如圖,已知橢圓:,其左右焦點為及,過點的直線交橢圓于兩點,線段的中點為,的中垂線與軸和軸分別交于兩點,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記△的面積為,△(為原點)的面積為.試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實數(shù)m取什么值時,復平面內(nèi)表示復數(shù)z=(m2-8m+15)+(m2-5m-14)i的點.
(1)位于第四象限?
(2)位于第一、三象限?
(3)位于直線y=x上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)如下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95多的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關(guān)?
(3)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調(diào)查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其左頂點在圓上.
(1)求橢圓的方程;
(2)若點為橢圓上不同于點 的點,直線與圓的另一個交點為.是否存在點,使得?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com