已知冪函數(shù)y=k•xα的圖象過點(diǎn)(
1
2
,
2
2
),則k+α=
 
考點(diǎn):冪函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用冪函數(shù)的性質(zhì)得
k=1
k•(
1
2
)α=
2
2
,由此能求出結(jié)果.
解答: 解:∵冪函數(shù)y=k•xα的圖象過點(diǎn)(
1
2
,
2
2
),
k=1
k•(
1
2
)α=
2
2
,解得k=1,α=
1
2
,
∴k+α=1+
1
2
=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題考查冪函數(shù)的性質(zhì)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意冪函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E是DD1的中點(diǎn).
(1)求證:BD1∥平面AEC;
(2)求BC1與平面ACC1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知
OA
=
a
+
b
+2
c
,
OB
=2
a
-
b
+
c
OC
=2
a
+3
b
+2
c
,
OD
=5
a
-3
b
-
c
,其中
.
a
,
b
,
c
三向量不共面.試判斷A,B,C,D四點(diǎn)是否共面?
(2)設(shè)
a1
=2
i
-
j
+
k
,
a2
=
i
+3
j
-2
k
,
a3
=-2
i
+
j
-3
k
,
a4
=3
i
+2
j
+5
k
.試問是否存在實(shí)數(shù)λ,μ,v,使
a4
a1
+μ
a2
+v
a3
成立?如果存在,求出λ,μ,v;如果不存在,請(qǐng)給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:
(1)y=x+
5
x
(x≥1);
(2)y=x+
5
x
(x≤-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l被兩直線l1:4x+y+6=0和l2:3x-5y-6=0截得線段的中點(diǎn)為P(0,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,2]上的最大值為20,則最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下面四個(gè)命題,不正確的是:
 

①若向量
a
、
b
滿足|
a
|=2|
b
|=4,且
a
b
的夾角為120°,則
b
a
上的投影等于-1;
②若等比數(shù)列{an}的前n項(xiàng)和為Sn,則Sn、S2n-Sn、S3n-S2n也成等比數(shù)列;
③常數(shù)列既是等差數(shù)列,又是等比數(shù)列;
④若向量
a
b
共線,則存在唯一實(shí)數(shù)λ,使得
a
b
成立.
⑤在正項(xiàng)等比數(shù)列{an}中,若a5a6=9,則log3a1+log3a2+…+log3a10=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,-1),
b
=(λ,3),若
a
b
的夾角為鈍角,則λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>0,a3=25,則log 
1
5
a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案