精英家教網 > 高中數學 > 題目詳情
如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x=
12
時,四邊形MENF的面積最;
③四邊形MENF周長l=f(x),x∈0,1]是單調函數;
④四棱錐C′-MENF的體積v=h(x)為常函數;
以上命題中真命題的序號為
①②④
①②④
分析:①利用面面垂直的判定定理去證明EF⊥平面BDD′B′.②四邊形MENF的對角線EF是固定的,所以要使面積最小,則只需MN的長度最小即可.③判斷周長的變化情況.④求出四棱錐的體積,進行判斷.
解答:解:①連結BD,B′D′,則由正方體的性質可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正確.
②連結MN,因為EF⊥平面BDD′B′,所以EF⊥MN,四邊形MENF的對角線EF是固定的,所以要使面積最小,則只需MN的長度最小即可,此時當M為棱的中點時,即x=
1
2
時,此時MN長度最小,對應四邊形MENF的面積最。寓谡_.
③因為EF⊥MN,所以四邊形MENF是菱形.當x∈[0,
1
2
]時,EM的長度由大變。攛∈[
1
2
,1]時,EM的長度由小變大.所以函數L=f(x)不單調.所以③錯誤.
④連結C′E,C′M,C′N,則四棱錐則分割為兩個小三棱錐,它們以C′EF為底,以M,N分別為頂點的兩個小棱錐.因為三角形C′EF的面積是個常數.M,N到平面C'EF的距離是個常數,所以四棱錐C'-MENF的體積V=h(x)為常函數,所以④正確.
故答案為:①②④.
點評:本題考查空間立體幾何中的面面垂直關系以及空間幾何體的體積公式,本題巧妙的把立體幾何問題和函數進行的有機的結合,綜合性較強,設計巧妙,對學生的解題能力要求較高.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點,G為DD1上一點,且D1G:GD=1:2,AC∩BD=O,求證:平面AGO∥平面D1EF.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是正方體ADD1A1和ABCD的中心,G是C1C的中點,設GF、C1F與AB所成的角分別為α、β,則α+β等于
π
2
π
2

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點,G為DD1上一點,且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 
 


查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,正方體ABCDA1B1C1D1的棱長為1,點MAB上,且AMAB,點P在平面ABCD上,且動點P到直線A1D1的距離的平方與P到點M的距離的平方差為1,在平面直角坐標系xAy中,動點P的軌跡方程是________.

查看答案和解析>>

科目:高中數學 來源:2012年人教B版高中數學必修2 1.2點 線 面之間的位置關系練習卷(解析版) 題型:解答題

(12分)如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點,G為DD1上一點,且D1G:GD=1:2,AC∩BD=O,求證:平面AGO//平面D1EF.

 

查看答案和解析>>

同步練習冊答案