已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的周期為π,其最高點(diǎn)的坐標(biāo)為(
π
6
,1)
(1)求φ和ω的值
(2)求f(x)的單調(diào)增區(qū)間
(3)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)的值域.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由周期求得ω,再根據(jù)最高點(diǎn)的坐標(biāo)以及0≤φ≤π,可得φ的值.
(2)由于f(x)=sin(2x+
π
6
),令 2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.(3)由x∈[0,
π
2
],利用正弦函數(shù)的定義域和值域,求得函數(shù)的值域.
解答: 解:(1)由題意可得
ω
=π,∴ω=2.
再根據(jù)最高點(diǎn)的坐標(biāo)為(
π
6
,1),可得 sin(
π
3
+φ)=1,再結(jié)合0≤φ≤π,可得φ=
π
6

(2)由于f(x)=sin(2x+
π
6
),令 2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈z,
求得 kπ-
π
3
≤x≤kπ+
π
6
,k∈z,故函數(shù)的增區(qū)間為[kπ-
π
3
,kπ+
π
6
],k∈z.
(3)由x∈[0,
π
2
],可得2x+
π
6
∈[
π
6
,
6
],sin(2x+
π
6
)∈[-
1
2
,1],
故函數(shù)的值域?yàn)閇-
1
2
,1].
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由最高點(diǎn)的坐標(biāo)求出φ的值,正弦函數(shù)的單調(diào)性、定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2(a>0),點(diǎn)P(1,-2).若存在兩條都過(guò)點(diǎn)P且互相垂直的直線l1和l2,它們與二次函數(shù)y=ax2(a>0)的圖象都沒(méi)有公共點(diǎn),則a的取值范圍為(  )
A、(
1
8
,+∞)
B、[
1
8
,+∞)
C、(0,
1
8
D、(0,
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=ax3+bx2+cx的極小值為-8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過(guò)點(diǎn)(-2,0),(
2
3
,0),如圖所示.
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若對(duì)x∈[-3,3]都有f(x)≥m2-14m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2cos(-θ),2sin(-θ)),
b
=(cos(90°-θ),sin(90°-θ))
(1)求證:
a
b
;
(2)若存在不等于0的實(shí)數(shù)k和t,使
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
滿足
x
y
.試求此時(shí)
k+t2
t
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,E為BD的中點(diǎn),G為PD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1,PA=
3
2
,連接CE并延長(zhǎng)交AD于F.
(1)求平面BCP與平面DCP的夾角的余弦值.                 
(2)在線段BP上是否存在一點(diǎn)H滿足
BH
BP
,使得DH與平面DPC所成角的正弦值為
1
74
?若存在,求出λ的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在三角形ABC中,AB=3,AC=4,BC=5.
(1)求向量
AB
+
AC
+
BC
的模;
(2)若長(zhǎng)為10的線段PQ以點(diǎn)A為中點(diǎn),問(wèn)
PQ
BC
的夾角θ取何值時(shí)
BP
CQ
的值最大?并求這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M:(x+
5
2+y2=36,N(
5
,0),點(diǎn)P是圓M上的任意一點(diǎn),線段NP的垂直平分線和半徑MP相較于點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡C的方程;
(Ⅱ)若圓x2+y2=4的切線與曲線C相交于A、B兩點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+3x+b(a<0,a、b∈R).設(shè)關(guān)于x的方程f(x)=0的兩個(gè)實(shí)根分別為α、β
(1)若|α-β|=1,求a、b的關(guān)系式;
(2)若a、b均為負(fù)整數(shù),且|α-β|=1,求f(x)的解析式;
(3)在(2)的條件下,若方程f(x)=(2m+2)x+2m+4至少有一個(gè)正根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

E是長(zhǎng)方體ABCD-A1B1C1D1的棱長(zhǎng)CC1所在直線上一點(diǎn),C1E=CC1=BC=
1
2
AB=1.
(1)求異面直線D1E與B1C所成角的余弦值;
(2)求點(diǎn)A到直線B1E的距離;
(3)求直線AC與平面D1EB1所成的角;
(4)求兩平面B1D1E與ACB1所形成的銳二面角的余弦值;
(5)求點(diǎn)A到平面D1EB1的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案