【題目】已知橢圓的右頂點(diǎn)為,點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),且,則橢圓的離心率的取值范圍為

A. B. C. D.

【答案】B

【解析】

將原問題轉(zhuǎn)化為橢圓與圓相交的問題,然后聯(lián)立方程結(jié)合圖形整理計(jì)算即可求得最終結(jié)果.

∵∠APO=90°,∴點(diǎn)P在以AO為直徑的圓上,

O(0,0),A(a,0),

∴以AO為直徑的圓方程為,x2+y2ax=0,

消去y,(b2a2)x2+a3xa2b2=0.

設(shè)P(m,n),

PA是橢圓x2+y2ax=0兩個(gè)不同的公共點(diǎn),

,可得.

∵由圖形得0<m<a,,

b2<a2b2,可得a2c2<c2,a2<2c2,

,解得橢圓離心率,

又∵e(0,1),

∴橢圓的離心率e的取值范圍為.

本題選擇B選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinxcos(x﹣ )+cos2x﹣
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時(shí)的取值集合;
(2)若f(x0)= ,x0∈[ , ],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知a2=2,S5=15,數(shù)列{bn},b1=1,對(duì)任意n∈N+滿足bn+1=2bn+1.
(1)數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,設(shè)數(shù)列{cn}的前n項(xiàng)和Tn , 證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為

(1)分別求出mn的值;

(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于18,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)棱垂直于底面,的中點(diǎn),過的平面與交于點(diǎn)

(1)求證:點(diǎn)的中點(diǎn);

(2)四邊形是什么平面圖形?說明理由,并求其面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),且,則橢圓的離心率的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個(gè)動(dòng)點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知,分別為橢圓C:的左、右焦點(diǎn),點(diǎn)在橢圓C上.

(1)求的最小值;

(2)已知直線l與橢圓C交于兩點(diǎn)A、B,過點(diǎn)且平行于直線l的直線交橢圓C于另一點(diǎn)Q,問:四邊形PABQ能否成為平行四邊形?若能,請(qǐng)求出直線l的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足條件:①當(dāng)x∈R時(shí),f(x)的最大值為0,且f(x﹣1)=f(3﹣x)成立;②二次函數(shù)f(x)的圖象與直線y=﹣2交于A、B兩點(diǎn),且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的實(shí)數(shù)n(n<﹣1),使得存在實(shí)數(shù)t,只要當(dāng)x∈[n,﹣1]時(shí),就有f(x+t)≥2x成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案