設、是兩個不同的平面,是一條直線,以下命題中,正確的是( )
A.若,,則 | B.若, ,則 |
C.若,,則 | D.若,,則 |
C
解析試題分析:解:若l⊥α,α⊥β,則l?β或l∥β,故A錯誤;若l∥α,α∥β,則l?β或l∥β,故B錯誤;若l⊥α,α∥β,由平面平行的性質,我們可得l⊥β,故C正確;若l∥α,α⊥β,則l⊥β或l∥β,故D錯誤;故選C
考點:空間中線面的位置關系
點評:判斷或證明線面平行的常用方法有:①利用線面平行的定義(無公共點);②利用線面平行的判定定理(a?α,b?α,a∥b⇒a∥α);③利用面面平行的性質定理(α∥β,a?α⇒a∥β);④利用面面平行的性質(α∥β,a?α,a?,a∥α⇒?a∥β).線線垂直可由線面垂直的性質推得,直線和平面垂直,這條直線就垂直于平面內(nèi)所有直線,這是尋找線線垂直的重要依據(jù).垂直問題的證明,其一般規(guī)律是“由已知想性質,由求證想判定”,也就是說,根據(jù)已知條件去思考有關的性質定理;根據(jù)要求證的結論去思考有關的判定定理,往往需要將分析與綜合的思路結合起來
科目:高中數(shù)學 來源: 題型:單選題
已知命題“直線與平面有公共點”是真命題,那么下列命題:
①直線上的點都在平面內(nèi);
②直線上有些點不在平面內(nèi);
③平面內(nèi)任意一條直線都不與直線平行.
其中真命題的個數(shù)是( )
A.3 | B.2 | C.1 | D.0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
若直線上有兩個點在平面外,則( )
A.直線上至少有一個點在平面內(nèi) |
B.直線上有無窮多個點在平面內(nèi) |
C.直線上所有點都在平面外 |
D.直線上至多有一個點在平面內(nèi) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
已知四棱錐中,側棱都相等,底面是邊長為的正方形,底面中心為,以為直徑的球經(jīng)過側棱中點,則該球的體積為( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com