【題目】學(xué)校某研究性學(xué)習(xí)小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當(dāng)x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時,學(xué)習(xí)效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請說明理由.

【答案】
(1)解:當(dāng)x∈(0,12]時,

設(shè)f(x)=a(x﹣10)2+80

過點(12,78)代入得,

當(dāng)x∈[12,40]時,

設(shè)y=kx+b,過點B(12,78)、C(40,50)

,即y=﹣x+90

則的函數(shù)關(guān)系式為


(2)解:由題意得,

得4<x≤12或12<x<28,

4<x<28

則老師就在x∈(4,28)時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳


【解析】(1)當(dāng)x∈(0,12]時,設(shè)f(x)=a(x﹣10)2+80,把點(12,78)代入能求出解析式;當(dāng)x∈[12,40]時,設(shè)y=kx+b,把點B(12,78)、C(40,50)代入能求出解析式.(2)由(1)的解析式,結(jié)合題設(shè)條件,列出不等式組,能求出老師就在什么時段內(nèi)安排核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳
【考點精析】通過靈活運用函數(shù)的最值及其幾何意義,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲导纯梢越獯鸫祟}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且以原點為圓心,橢圓的焦距為直徑的圓與直線相切(為常數(shù)).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,若橢圓的左、右焦點分別為,過作直線與橢圓分別交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線從點(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為的函數(shù),若滿足①;②當(dāng),且時,都有③當(dāng),且時, ,則稱偏對稱函數(shù).現(xiàn)給出四個函數(shù):

;

;

則其中是偏對稱函數(shù)的函數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知符號函數(shù)sgn(x)= ,則函數(shù)f(x)=sgn(lnx)﹣lnx的零點個數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海南大學(xué)某餐飲中心為了解新生的飲食習(xí)慣,在全校新生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計

70

30

100

(Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

(Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名中文系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

附:,K2

P(K2k0)

0.10

0.05

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實數(shù)a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ).

(1)若的圖象在點處的切線方程為,求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時, . (Ⅰ)求f(x)的解析式;
(Ⅱ)運用函數(shù)單調(diào)性定義證明f(x)在定義域R上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案