【題目】圖是一個(gè)的方格(其中心的方格線已被劃去).一只青蛙停在格處,從某一時(shí)刻起,青蛙每隔一秒鐘就跳到與它所在方格有公共邊的另一方格內(nèi),直至跳到格才停下..若青蛙經(jīng)過每一個(gè)方格不超過一次,則青蛙的跳法總數(shù)為________.

【答案】26

【解析】

如圖,分兩種情況討論.

(1)如果青蛙不經(jīng)過格,則有2條路徑:,.

(2)如果青蛙經(jīng)過格,若某時(shí)刻青蛙跳到格,則它下一秒內(nèi)一定跳至格;若某時(shí)刻青蛙跳到格,則它下一秒內(nèi)一定不會(huì)跳至格.因此,可將、兩格合并為一個(gè)大方格(設(shè)之為).同樣地,可將 、兩格合并為大方格.

如果兩個(gè)方格有公共邊,則在兩個(gè)方格間連上虛線,如圖9.

由圖可知,、、對(duì)稱地分布在直線的兩側(cè).

顯然,青蛙第一步必跳入、兩格中的某格,倒數(shù)第二步必跳入、兩格中的某格.

如果青蛙第一步跳至格,倒數(shù)第二步跳至格,那么,這樣的路徑有3條:,.

如果青蛙第一步跳至格,倒數(shù)第二步跳至格,設(shè)青蛙第秒鐘跳至格,第秒跳至格,第 秒跳至格.

格可以是、、、格可以是、.因此,這樣的路徑有條.

由對(duì)稱性知,如果青蛙第一步跳至格,倒數(shù)第二步跳至格,則這樣的路徑有3條;如果青蛙第一步跳格,倒數(shù)第二步跳至格,則這樣的路徑有9條.

綜上,青蛙的跳法總數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位從一所學(xué)校招收某類特殊人才.對(duì)位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動(dòng)協(xié)調(diào)能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果如下表:

一般

良好

優(yōu)秀

一般

良好

優(yōu)秀

例如表中運(yùn)動(dòng)協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這參加測(cè)試的學(xué)生中隨機(jī)抽取一,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為

1,的值;

2運(yùn)動(dòng)協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)=[]

若曲線y= fx在點(diǎn)(1,處的切線與軸平行,a

x=2處取得極小值,a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某年數(shù)學(xué)競(jìng)賽請(qǐng)自以為來自X星球的選手參加填空題比賽,共10道題目,這位選手做題有一個(gè)古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會(huì)的題就作答,遇到不會(huì)的題目先跳過(允許跳過所有的題目),一直看到第1題;然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個(gè)答案,遇到先前已答的題目則跳過(例如,他可以按照9,8,7,4,3,2,1,5,6,10的次序答題),這樣所有的題目均有作答,設(shè)這位選手可能的答題次序有n種,則n的值為(

A.512B.511C.1024D.1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù),函數(shù).

1)令時(shí),求的最小值,并比較的最小值與零的大小;

2)求證:上是增函數(shù);

3)求證:當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)銳角的外接圓的半徑為,在內(nèi)取外接圓的同心圓,其半徑為 ,從圓上任取一點(diǎn),作于點(diǎn),于點(diǎn),于點(diǎn)

(1)求證:的面積為定值;

(2)猜想:當(dāng)為任意三角形、同心圓為任意同心圓時(shí),結(jié)論是否成立(不要求證明)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)240名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題,測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測(cè)試后,從中隨機(jī)抽取了20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如表:

(Ⅰ)根據(jù)題中數(shù)據(jù),估計(jì)中240名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

(Ⅱ)從抽樣的20名學(xué)生中隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對(duì)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅲ)試題的預(yù)估難度和實(shí)測(cè)難度之間會(huì)有偏差.設(shè)為第題的實(shí)測(cè)難度,請(qǐng)用設(shè)計(jì)一個(gè)統(tǒng)計(jì)量,并制定一個(gè)標(biāo)準(zhǔn)來判斷本次測(cè)試對(duì)難度的預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是正方形,且四個(gè)側(cè)面均為等邊三角形.延長(zhǎng)至點(diǎn)使,連接,.

1)證明:

2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬是史記中記載的一個(gè)故事,說的是齊國(guó)將軍田忌經(jīng)常與齊國(guó)眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個(gè)必勝策略:比賽即將開始時(shí),他讓田忌用下等馬對(duì)戰(zhàn)公子們的上等馬,用上等馬對(duì)戰(zhàn)公子們的中等馬,用中等馬對(duì)戰(zhàn)公子們的下等馬,從而使田忌贏得公子們?cè)S多賭注假設(shè)田忌的各等級(jí)馬與某公子的各等級(jí)馬進(jìn)行一場(chǎng)比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場(chǎng)賽馬組成,每場(chǎng)由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場(chǎng)賽馬的馬的等級(jí)各不相同,三場(chǎng)比賽中至少獲勝兩場(chǎng)的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級(jí)馬對(duì)戰(zhàn),每次比賽賭注1000金,即勝利者贏得對(duì)方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案