精英家教網(wǎng)如圖,以A1,A2為焦點(diǎn)的雙曲線E與半徑為c的圓O相交于C,D,C1,D1,連接CC1與OB交于點(diǎn)H,且有:
OH
=(3+2
3
)
HB
.其中A1,A2,B是圓O與坐標(biāo)軸的交點(diǎn),c為雙曲線的半焦距.
(1)當(dāng)c=1時(shí),求雙曲線E的方程;
(2)試證:對任意正實(shí)數(shù)c,雙曲線E的離心率為常數(shù).
(3)連接A1C與雙曲線E交于F,是否存在
實(shí)數(shù)λ,使
A1F
FC
恒成立,若存在,試求出λ的值;若不存在,請說明理由.
分析:(1)根據(jù)題意可求得B的坐標(biāo)和H的坐標(biāo),設(shè)出曲線E的方程,把點(diǎn)C代入曲線E,利用半焦距c聯(lián)立方程求得a和b,則曲線E的方程可得.
(2)根據(jù)題意可表示出H的坐標(biāo),設(shè)出曲線E的方程,聯(lián)立方程求得a和b的關(guān)系,進(jìn)而根據(jù)雙曲線中a,b和c關(guān)系求得a和c的關(guān)系,則雙曲線的離心率可得.推斷出雙曲線E的離心率為常數(shù).
(3)先假設(shè)存在實(shí)數(shù)λ,依題意可知C點(diǎn)坐標(biāo),利用
A1F
FC
表示出F的坐標(biāo),分別代入雙曲線的方程,聯(lián)立求得λ關(guān)于e的表達(dá)式,進(jìn)而根據(jù)(2)中e為常數(shù)推斷出存在實(shí)數(shù)λ使題設(shè)等式成立.
解答:解:(1)由c=1知B(0,1),∵
OH
=(3+2
3
)
HB
,
xH=0,yH=
3+2
3
4+2
3
=
3
2

即H(0,
3
2
)點(diǎn)C在單位圓上,∴C=(
1
2
3
2

設(shè)雙曲線E的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0).
由點(diǎn)C的雙曲線E上,半焦距c=1有:
a2+b2=1
1
4a2
-
3
4b2
=1

解得
a2=1-
3
2
b2=
3
2

所以雙曲線E的方程為:
x2
1-
3
2
-
y2
3
2
=1

(2)證明:∵A1(-c,0),B(0,c),
O
H
=(3+2
3
)H
B
得:H(0,
3
2
),(
1
2
c,
3
2
c)
設(shè)雙曲線E的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0)
a2+b2=c2
c2
4a2
-
3c2
4b2
=1②

①代入②,化簡整理得3a4+6a2b2-b4=0,
(
b
a
)4-6(
b
a
)
2
-3=0

解得(
b
a
)
2
=3+2
3

e2=
c2
a2
=1+(
b
a
)
2
=4+2
3

e=
4+2
3
=
3
+1
,即雙曲線E的離心離是與c無關(guān)的常數(shù).
(3)假設(shè)存在實(shí)數(shù)λ,使A1
F
=λF
C
恒成立,
A1(-c,0),C(
c
2
3
c
2
)
xF=
-c+
c
2
•λ
1+λ
,yf=
3
2
•λ
1+λ

點(diǎn)F
c(λ-2)
2(1+λ)
,
3
λ
2(1+λ)
點(diǎn)C,F(xiàn)都在雙曲線E上,
故有
c2
4a2
-
3c2
4b2
=1③
c2(λ-2)2
4a2(1+λ)2
-
3c2λ2
4b2(1+λ)2

由③得e2-
3c2
b2
=4?
c2
b2
=
e2-4
3

⑤代入④得
e2(λ-2)2
4(1+λ)2
-(e2-4)•
λ2
4(1+λ)2
=1

化簡整理得-λe2+e2=2λ+1
λ=
e2-1
e2+2
,利用(2)小題的結(jié)論得:λ=
3+2
3
6+2
3
=
1+
3
4

故存在實(shí)數(shù)λ=
1+
3
4
,使A1
F
=λF
C
恒成立.
點(diǎn)評:本題主要考查了直線與圓錐曲線的綜合問題,雙曲線的標(biāo)準(zhǔn)方程和雙曲線的簡單性質(zhì).考查了運(yùn)算的能力,分析問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)抽取某產(chǎn)品n件,測得其長度分別為以a1,a2,…,an,則如圖所示的程序框圖輸出的s=
a1+a2+a2+…+an
n
a1+a2+a2+…+an
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以A1、A2為焦 點(diǎn)的雙曲線E與半徑為c的圓O相交于C、D、C1、D1,連接CC1OB交于點(diǎn)H,且有是圓O與坐標(biāo)軸的交點(diǎn),c為雙曲線的半焦距.

(1)當(dāng)c=1時(shí),求雙曲線E的方程;

(2)試證:對任意正實(shí)數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接A1C,與雙曲線E交于點(diǎn)F,是否存在實(shí)數(shù),使恒成立?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以A1、A2為焦 點(diǎn)的雙曲線E與半徑為c的圓O相交于C、DC1、D1,連接CC1OB交于點(diǎn)H,且有是圓O與坐標(biāo)軸的交點(diǎn),c為雙曲線的半焦距.

(1)當(dāng)c=1時(shí),求雙曲線E的方程;

(2)試證:對任意正實(shí)數(shù)c,雙曲線E的離心率為常數(shù);

(3)連接A1C,與雙曲線E交于點(diǎn)F,是否存在實(shí)數(shù),使恒成立?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)壓軸試卷集錦(10)(解析版) 題型:解答題

如圖,以A1,A2為焦點(diǎn)的雙曲線E與半徑為c的圓O相交于C,D,C1,D1,連接CC1與OB交于點(diǎn)H,且有:.其中A1,A2,B是圓O與坐標(biāo)軸的交點(diǎn),c為雙曲線的半焦距.
(1)當(dāng)c=1時(shí),求雙曲線E的方程;
(2)試證:對任意正實(shí)數(shù)c,雙曲線E的離心率為常數(shù).
(3)連接A1C與雙曲線E交于F,是否存在
實(shí)數(shù)λ,使恒成立,若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案