【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)與的交點為,當(dāng)變化時,的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè),為與的交點,求的極徑.
【答案】(1);(2).
【解析】
(1)分別消掉參數(shù)t與m可得直線l1與直線l2的普通方程為y=k(x-2)①與x=-2+ky②;聯(lián)立①②,消去k可得C的普通方程為x2-y2=4;
(2)將l的極坐標(biāo)方程與曲線C的極坐標(biāo)方程聯(lián)立,可得關(guān)于θ的方程,解得tanθ,即可求得l與C的交點M的極徑為ρ.
(1)消去參數(shù)t,得l1的普通方程l1:y=k(x-2);
消去參數(shù)m,得l2的普通方程l2:y= (x+2). 設(shè)P(x,y),由題設(shè)得
消去k,得x2-y2=4(y≠0),所以C的普通方程為x2-y2=4(y≠0).
(2)C的極坐標(biāo)方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),
聯(lián)立得cos θ-sin θ=2(cos θ+sin θ).
故tan θ=-,從而cos2θ=,sin2θ=.
代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,所以l與C的交點M的極徑為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知8件不同的產(chǎn)品中有3件次品,現(xiàn)對它們一一進(jìn)行測試,直至找到所有次品.
(1)若恰在第2次測試時,找到第一件次品,第6次測試時,才找到最后一件次品,則共有多少種不同的測試方法?
(2)若至多測試5次就能找到所有次品,則共有多少種不同的測試方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知冪函數(shù)在上單調(diào)遞減則或
B.函數(shù)的有兩個零點,一個大于0,一個小于0的一個充分不必要條件是.
C.已知函數(shù),若,則的取值范圍為
D.已知函數(shù)滿足,,且與的圖像的交點為則的值為8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時,輸出的的值為2,則空白判斷框中的條件可能為( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為4,離心率為,斜率不為0的直線l與橢圓恒交于A,B兩點,且以AB為直徑的圓過橢圓的右頂點M.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com