(本小題滿分11分)已知拋物線關(guān)于軸對稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn)
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若的三個(gè)頂點(diǎn)在拋物線上,且點(diǎn)的橫坐標(biāo)為1,過點(diǎn)分別作拋物線的切線,兩切線相交于點(diǎn),直線軸交于點(diǎn),當(dāng)直線的斜率在上變化時(shí),直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請說明理由。
(1);(2)略
(1),…………………………5分
(2) B,設(shè),
設(shè)BC的斜率為k,則

,
,C A
,
直線AC的方程為
   ……………………6分
AD:
同理CD:,聯(lián)立兩方程得D………7分
         ………8分
                     ………9分
………10分
                                       ………11分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題 12分).過點(diǎn)A(-4,0)向橢圓引兩條切線,切點(diǎn)分別為B,C,且為正三角形.
(Ⅰ)求最大時(shí)橢圓的方程;
(Ⅱ)對(Ⅰ)中的橢圓,若其左焦點(diǎn)為,過的直線軸交于點(diǎn),與橢圓的一個(gè)交點(diǎn)為,且求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1),且過點(diǎn)A(2,t),
(1)求t的值;
(2)若點(diǎn)P、Q是拋物線C上兩動(dòng)點(diǎn),且直線AP與AQ的斜率互為相反數(shù),試問直線PQ的斜率是否為定值,若是,求出這個(gè)值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有如下結(jié)論:“圓上一點(diǎn)處的切線方程為”,類比也有結(jié)論:“橢圓處的切線方程為”,過橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.
(1)求證:直線AB恒過一定點(diǎn);
(2)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知傾斜角為的直線過橢圓的右焦點(diǎn),則被橢圓所截的弦長
是                                                            (   )
A. B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知:, 滿足條件的動(dòng)點(diǎn)P的軌跡是雙曲線的一支,則可以是下列數(shù)據(jù)中的①2; ②; ③4; ④    (       )
A.①③B.①②C.①②④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線與雙曲線。某學(xué)生做了如下變形:由方程組,消去后得到形如的方程。當(dāng)時(shí),該方程有一解,當(dāng)時(shí),恒成立。假設(shè)該學(xué)生的演算過程是正確的,則實(shí)數(shù)m的取值范圍是                                                     (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的焦點(diǎn)在軸,長軸長為10,離心率為,則該橢圓的標(biāo)準(zhǔn)方程為     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的交點(diǎn)在其準(zhǔn)線上.設(shè)拋物線,弦AB過焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案