設(shè)拋物線的方程為為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;

(2)求證:直線恒過(guò)定點(diǎn).

 

 

【答案】

 設(shè)拋物線的方程為,為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;

(2)求證:直線恒過(guò)定點(diǎn);

解:(1)當(dāng)的坐標(biāo)為時(shí),設(shè)過(guò)點(diǎn)的切線方程為,代入,整理得,

,解得

代入方程得,故得,       .................2分

因?yàn)?sub>的中點(diǎn)的距離為,

從而過(guò)三點(diǎn)的圓的方程為

易知此圓與直線相切.              ..................4分

(2)證法一:設(shè)切點(diǎn)分別為,,過(guò)拋物線上點(diǎn)的切線方程為,代入,整理得    

,又因?yàn)?sub>,所以................6分

從而過(guò)拋物線上點(diǎn)的切線方程為

又切線過(guò)點(diǎn),所以得    ①   即....8分

同理可得過(guò)點(diǎn)的切線為

又切線過(guò)點(diǎn),所以得    ②  ....10分

.................6分

即點(diǎn),均滿足,故直線的方程為     .........................................12分

為直線上任意一點(diǎn),故對(duì)任意成立,所以,從而直線恒過(guò)定點(diǎn)       ..................14分

證法二:設(shè)過(guò)的拋物線的切線方程為,代入,消去,得    

即:.................6分

從而,此時(shí),

所以切點(diǎn)的坐標(biāo)分別為,.................8分

因?yàn)?sub>,,

,

所以的中點(diǎn)坐標(biāo)為....................................11分

故直線的方程為,即...........12分

為直線上任意一點(diǎn),故對(duì)任意成立,所以,從而直線恒過(guò)定點(diǎn)       ..................14分

證法三:由已知得,求導(dǎo)得,切點(diǎn)分別為,,故過(guò)點(diǎn)的切線斜率為,從而切線方程為

...............................................................7分

又切線過(guò)點(diǎn),所以得    ①   即........8分

同理可得過(guò)點(diǎn)的切線為

又切線過(guò)點(diǎn),所以得    ②  即........10分

即點(diǎn),均滿足,故直線的方程為                                  .................12分

為直線上任意一點(diǎn),故對(duì)任意成立,所以,從而直線恒過(guò)定點(diǎn)       ..................14分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江模擬)如圖,已知拋物線的方程為x2=2py(p>0),過(guò)點(diǎn)A(0,-1)作直線與拋物線相交于P,Q兩點(diǎn),點(diǎn)B的坐標(biāo)為(0,1),連接BP,BQ,設(shè)QB,BP與x軸分別相交于M,N兩點(diǎn).如果QB的斜率與PB的斜率的乘積為-3,則∠MBN的大小等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省韶關(guān)市高三第一次調(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分14分)設(shè)拋物線的方程為為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;

(2)求證:直線恒過(guò)定點(diǎn);

(3)當(dāng)變化時(shí),試探究直線上是否存在點(diǎn),使為直角三角形,若存在,有幾個(gè)這樣的點(diǎn),若不存在,說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省韶關(guān)市高三第一次調(diào)研考試文科數(shù)學(xué) 題型:解答題

(本題滿分14分)設(shè)拋物線的方程為,為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;

(2)求證:直線恒過(guò)定點(diǎn).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東韶關(guān)市2011-2012學(xué)年高三第一次調(diào)研考試數(shù)學(xué)理科試題 題型:解答題

 設(shè)拋物線的方程為為直線上任意一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,.

(1)當(dāng)的坐標(biāo)為時(shí),求過(guò)三點(diǎn)的圓的方程,并判斷直線與此圓的位置關(guān)系;

(2)求證:直線恒過(guò)定點(diǎn);

(3)當(dāng)變化時(shí),試探究直線上是否存在點(diǎn),使為直角三角形,若存在,有幾個(gè)這樣的點(diǎn),若不存在,說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案