已知橢圓方程為,長軸兩端點為A、B,短軸上端點為C.
(1)若橢圓焦點坐標(biāo)為,點M在橢圓上運動,當(dāng)△ABM的最大面積為3時,求其橢圓方程;
(2)對于(1)中的橢圓方程,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點P、Q在橢圓上,試問在y軸上是否存在一點T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點T的坐標(biāo)和定值,如果不存在,說明理由.
【答案】分析:(1)由焦點坐標(biāo)可求c,利用△ABM的最大面積為3,可得a,b的關(guān)系,再借助于幾何量間的關(guān)系,可求橢圓方程;
(2)根據(jù)C是直角頂點,假設(shè)CE所在的直線方程與橢圓方程聯(lián)立求得CE,CD的長,利用|CE|=|CD|,可求關(guān)系式;
(3)先假設(shè)T(0,-b),P(x1,y1),Q(x2,y2),利用垂直于,點P、Q在橢圓上,可表示出直線TP的斜率與TQ的斜率之積,從而得解.
解答:解:(1)由已知:,,聯(lián)立方程組求得:a=3,b=1,所求方程為:(4分)
(2)依題意設(shè)CE所在的直線方程為y=kx+1(k<0),代入橢圓方程并整理得:(1+9k2)x2+18kx=0,則,同理(8分)
由|CE|=|CD|得k3+9k2+9k+1=0,即(k+1)(k2+8k+1)=0(11分)
(3)由題意得:T(0,-b),又知,
設(shè)P(x1,y1),Q(x2,y2x1x2=-(y1-b)(y2-b)(13分)
又由,同理,
所以
從而得所以(15分)
(為定值).對比上式可知:
選取T(0,-b),則得直線TP的斜率與TQ的斜率之積為(18分)
點評:本題主要考查了橢圓的標(biāo)準方程,考查研究橢圓和解三角形問題的綜合,考查是否存在性問題的探究.對學(xué)生對問題的綜合分析的能力要求很高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為x2+2y2=1,則該橢圓的長軸長為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示:已知橢圓方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A,B是橢圓與斜軸的兩個交點,F(xiàn)是橢圓的焦點,且△ABF為直角三角形.
(1)求橢圓離心率;
(2)若橢圓的短軸長為2,過F的直線與橢圓相交的弦長為
3
2
2
,試求弦所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年長郡中學(xué)二模理)(13分)  已知橢圓方程為,長軸兩端點為,短軸上端點為

(1)若橢圓焦點坐標(biāo)為,點在橢圓上運動,當(dāng)的最大面積為3時,求其橢圓方程;

(2)對于(1)中的橢圓方程,作以為直角頂點的內(nèi)接于橢圓的等腰直角三角形,設(shè)直線的斜率為,試求的值;

(3)過任作垂直于,點在橢圓上,試問在軸上是否存在點,使得直線的斜率與的斜率之積為定值,如果存在,找出一個點的坐標(biāo),如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省月考題 題型:解答題

已知橢圓方程為,長軸兩端點為A、B,短軸上端點為C.
(1)若橢圓焦點坐標(biāo)為,點M在橢圓上運動,當(dāng)△ABM的最大面積為3時,求其橢圓方程;
(2)對于(1)中的橢圓方程,作以C為直角頂點的內(nèi)接于橢圓的等腰直角三角形CDE,設(shè)直線CE的斜率為k(k<0),試求k滿足的關(guān)系等式;
(3)過C任作垂直于,點P、Q在橢圓上,試問在y軸上是否存在一點T使得直線TP的斜率與TQ的斜率之積為定值,如果存在,找出點T的坐標(biāo)和定值,如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案