等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項公式;
(2)設bn=,求數(shù)列{bn}的前n項和Sn.
科目:高中數(shù)學 來源: 題型:解答題
從中這個數(shù)中取(,)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為.
(1)當時,寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設為數(shù)列的前項和,對任意的,都有為常數(shù),且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設數(shù)列的公比,數(shù)列滿足,,求數(shù)列的通項公式;
(3)在滿足(2)的條件下,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知等差數(shù)列{an}的前n項和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,則數(shù)列{bn}的最小項是第幾項,并求該項的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求證:{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(1)已知兩個等比數(shù)列{an},{bn},滿足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,求a的值;
(2)是否存在兩個等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,求{an},{bn}的通項公式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等差數(shù)列{an}的首項為a1,公差d=-1,前n項和為Sn.
(1)若S5=-5,求a1的值.
(2)若Sn≤an對任意正整數(shù)n均成立,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在公差為d的等差數(shù)列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設正項數(shù)列{an}的前n項和是Sn,若{an}和{}都是等差數(shù)列,且公差相等.
(1)求{an}的通項公式;
(2)若a1,a2,a5恰為等比數(shù)列{bn}的前三項,記數(shù)列cn=,數(shù)列{cn}的前n項和為Tn,求Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com