(理科)已知函數(shù)數(shù)學(xué)公式,其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時(shí),設(shè)f(x)的反函數(shù)為f-1(x),且函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱,求g(1)的取值集合B;
(3)對(duì)于問(wèn)題(1)(2)中的A、B,當(dāng)a∈{a|a<0,a∉A,a∉B}時(shí),不等式x2-10x+9<a(x-4)恒成立,求x的取值范圍.

解:(1)由必要條件f(-1)+f(1)=0得a2-a-2=0,a<0,
所以a=-1,…2分
下面證充分性,當(dāng)
任取x≠0,x∈R.

==0恒成立…2分
由A={-1}.…1分
(2)當(dāng),

互換x,y得,…1分
從而
所以g(1)=-4.…2分
即B={-4}.…1分
(3)原問(wèn)題轉(zhuǎn)化為
g(a)=(x-4)a-(x2-10x+9)>0,
a∈{a|a<0,a≠-1,a≠-4}恒成立,
…2分

則x的取值范圍為{1,4}…2分
分析:(1)由必要條件f(-1)+f(1)=0得a2-a-2=0,a<0,所以a=-1.當(dāng),任取x≠0,x∈R.==0恒成立.由此能求出集合A.
(2)當(dāng),得,互換x,y得,由此能求出集合B.
(3)原問(wèn)題轉(zhuǎn)化為g(a)=(x-4)a-(x2-10x+9)>0,a∈{a|a<0,a≠-1,a≠-4}恒成立則,由此能求出x的取值范圍.
點(diǎn)評(píng):本題考查函數(shù)的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(diǎn)(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知向量
a
=(sin2
π
6
x,cos2
π
6
x
),
b
=(sin2
π
6
x,-cos2
π
6
x
),g(x)=
a
b

(Ⅰ)求函數(shù)g(x)的解析式,并求其單調(diào)增區(qū)間;
(Ⅱ)若集合M={f(x)丨f(x)+f(x+2)=f(x+1),x∈R},試判斷g(x)與集合M的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(diǎn)(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(diǎn)(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省廣州86中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P、Q是其圖象上任意兩點(diǎn)(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(diǎn)(0,b)成中心對(duì)稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案