【題目】已知函數(shù):
(I)當(dāng)時(shí),求的最小值;
(II)對(duì)于任意的都存在唯一的使得,求實(shí)數(shù)a的取值范圍.
【答案】(I)答案不唯一,見(jiàn)解析(II)
【解析】
(I)求導(dǎo)后,通過(guò)對(duì)的討論,得到函數(shù)的單調(diào)性,根據(jù)單調(diào)性可得最小值;
(II)對(duì)于任意的都存在唯一的使得,得的值域是的值域的子集,求出兩個(gè)函數(shù)的值域后列式可求得.,注意的唯一性滿(mǎn)足
解:(I)
時(shí),遞增,,
時(shí),遞減,
時(shí),時(shí)遞減,
時(shí)遞增,
所以
綜上,當(dāng);
當(dāng)
當(dāng)
(II)因?yàn)閷?duì)于任意的都存在唯一的使得成立,
所以的值域是的值域的子集.
因?yàn)?/span>
遞增,的值域?yàn)?/span>
(i)當(dāng)時(shí),在上單調(diào)遞增,
又,
所以在[1,e]上的值域?yàn)?/span>,
所以
即
(ii)當(dāng)時(shí),因?yàn)?/span>時(shí),遞減,時(shí),遞增,且,
所以只需
即,所以
(iii)當(dāng)時(shí),因?yàn)?/span>在上單調(diào)遞減,且,
所以不合題意.
綜合以上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)不變,再向右平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,則下列說(shuō)法正確的是( )
A. 函數(shù)的一條對(duì)稱(chēng)軸是
B. 函數(shù)的一個(gè)對(duì)稱(chēng)中心是
C. 函數(shù)的一條對(duì)稱(chēng)軸是
D. 函數(shù)的一個(gè)對(duì)稱(chēng)中心是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),,給定下列命題:
①若方程有兩個(gè)不同的實(shí)數(shù)根,則;
②若方程恰好只有一個(gè)實(shí)數(shù)根,則;
③若,總有恒成立,則;
④若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù).
則正確命題的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn),兩點(diǎn),且圓心C在直線(xiàn)上.
(1)求圓C的方程;
(2)設(shè),對(duì)圓C上任意一點(diǎn)P,在直線(xiàn)MC上是否存在與點(diǎn)M不重合的點(diǎn)N,使是常數(shù),若存在,求出點(diǎn)N坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)在上的單調(diào)性;
(2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科技改變生活,方便生活.共享單車(chē)的使用就是云服務(wù)的一種實(shí)踐,它是指企業(yè)與政府合作,為居民出行提供單車(chē)共享服務(wù),它符合低碳出行理念,為解決城市出行的“最后一公里”提供了有力支撐,是共享經(jīng)濟(jì)的一種新形態(tài).某校學(xué)生社團(tuán)為研究當(dāng)?shù)厥褂霉蚕韱诬?chē)人群的年齡狀況,隨機(jī)抽取了當(dāng)?shù)?/span>名使用共享單車(chē)的群眾作出調(diào)查,所得頻率分布直方圖如圖所示.
(1)估計(jì)當(dāng)?shù)毓蚕韱诬?chē)使用者年齡的中位數(shù);
(2)若按照分層抽樣從年齡在,的人群中抽取人,再?gòu)倪@人中隨機(jī)抽取人調(diào)查單車(chē)使用體驗(yàn)情況,記抽取的人中年齡在的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為橢圓:的右焦點(diǎn),橢圓上任意一點(diǎn) 到點(diǎn)的距離與點(diǎn)到直線(xiàn):
的距離之比為。
(1)求直線(xiàn)方程;
(2)設(shè)為橢圓的左頂點(diǎn),過(guò)點(diǎn)的直線(xiàn)交橢圓于、兩點(diǎn),直線(xiàn)、與直線(xiàn)分別相交于、兩點(diǎn),以為直徑的圓是否恒過(guò)一定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝元價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式;
(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天的各需求量的頻率作為各需求量發(fā)生的概率.
若花店一天購(gòu)進(jìn)枝玫瑰花, 表示當(dāng)天的利潤(rùn)(單位:元),求的分布列, 數(shù)學(xué)期望及方差;
若花店一天購(gòu)進(jìn)枝或枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)枝還是枝?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com