(本小題兩小題,每題6分,滿分12分)
⑴對任意,試比較與的大小;
⑵已知函數(shù)的定義域為R,求實數(shù)k的取值范圍。
⑴。⑵
解析試題分析:(1)根據(jù)作差法比較大小是一種重要的方法。同時要注意差式的變形技巧的運用。
(2)利用對數(shù)函數(shù)定義域為R,說明了無論x取什么樣的數(shù),表達式真數(shù)恒大于零,那么說明二次函數(shù)開口向上,判別式小于零得到。
⑴∵,∴。
⑵∵的定義域為,即恒成立,∴,
即
考點:本題主要考查配方法的運用,為判定差是大于零還是小于零,配方法也是常用的方法之一,比差法是比較兩個代數(shù)式值的大小的常用方法,此題正是有效地利用了這兩個方法,使問題得到解決,同時也考查了函數(shù)的定義域為R的理解和運用。
點評:解決該試題的關(guān)鍵是要比較兩式的大小,可以運用比差法,把兩個式子相減,可以得運用配方法來比較與零的大小關(guān)系,要使得對數(shù)函數(shù)定義域為R,說明了對數(shù)的真數(shù)部分恒大于零。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的最小值為1,且。
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知奇函數(shù)
(1)求實數(shù)m的值,并在給出的直角坐標系中畫出的圖象;
(2)若函數(shù)在區(qū)間[-1,-2]上單調(diào)遞增,試確定的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù) 定義在上,對于任意實數(shù),恒有,且當(dāng)時,
(1)求證:,且當(dāng)時,
(2)求在上的單調(diào)性.
(3)設(shè)集合,,且,
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
(1)求f(f(-2))的值;
(2)求f(a2+1)(a∈R)的值;
(3)當(dāng)-4≤x<3時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分) 本題請注意換算單位
某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。
(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;
(總開發(fā)費用=總建筑費用+購地費用)
(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
(1)已知二次函數(shù),求的單調(diào)遞減區(qū)間。
(2)在區(qū)間上單調(diào)遞減,求實數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com