如圖,已知圓心坐標為的圓軸及直線均相切,切點分別為、,另一圓與圓、軸及直線均相切,切點分別為、

(1)求圓和圓的方程;
(2)過點作的平行線,求直線被圓截得的弦的長度;

(1);(2)

解析試題分析:(1)圓M與圓N的圓心都在的平分線上,并且兩圓都與x軸相切,所以半徑等于圓心的縱坐標,所以圓M的方程即可求出,利用相似可求出N點的坐標.(2)通過計算弦心距,再利用圓中的重要三角形,解出半弦長從而求得弦長.
試題解析:(1)由于圓的兩邊相切,故的距離均為圓的半徑,則的角平分線上,同理,也在的角平分線上,
三點共線,且的角平分線,
的坐標為,軸的距離為1,即:圓的半徑為1,
的方程為
設圓的半徑為,由,得:,
,,的方程為:;
(2)由對稱性可知,所求弦長等于過點的的平行線被圓截得的弦長,
此弦所在直線方程為,即,
圓心到該直線的距離
則弦長=
考點:1.求圓的標準方程.2.直線與圓相切,圓與圓相切.3.圓中的重要三角形.4.點到直線的距離.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)拋物線與橢圓有公共焦點,設軸交于點,不同的兩點、 上(不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點F是拋物線C:的焦點,S是拋物線C在第一象限內的點,且|SF|=.

(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構成的三角形的面積為,直線l的方程為: 
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于兩點
①若線段中點的橫坐標為,求斜率的值;
②已知點,求證:為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓)的右焦點,右頂點,右準線

(1)求橢圓的標準方程;
(2)動直線與橢圓有且只有一個交點,且與右準線相交于點,試探究在平面直角坐標系內是否存在點,使得以為直徑的圓恒過定點?若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點坐標為,過的直線交拋物線兩點,直線分別與直線相交于兩點.

(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點在軸上,且過點.

(Ⅰ)求拋物線的標準方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點若拋物線上一點滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓:,離心率為,焦點的直線交橢圓于兩點,且的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點P(0,m)(m0),與橢圓C交于相異兩點A,B且.若,求m的取值范圍。

查看答案和解析>>

同步練習冊答案