(2010•崇文區(qū)一模)如圖,從圓O外一點P引圓O的兩條切線PA,PB,切點分別為A,B.如果∠APB=60°,PA=8,那么點P與O間的距離是( )

A.16 B.20 C. D.

 

C

【解析】

試題分析:作輔助線,連接OA,OP,根據(jù)切線長定理可知:∠OPA=∠APB,由PA與⊙O相切,可知:OA⊥AP,根據(jù)已知條件可將OP的長求出.

【解析】
連接OA,OP

∵PA,PB是⊙O的切線,∠APB=60°,

∴∠OPA=∠APB=30°,OA⊥OP,

∴OP===

∴點P與O間的距離是

故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:[同步]2015人教B版選修4-5 3.2用數(shù)學歸納法證明不等式練習卷(解析版) 題型:解答題

用數(shù)學歸納法證明不等式:+++…+>1(n∈N*且n>1).

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:選擇題

設A=,則矩陣A的一個特征值λ和對應的一個特征向量為( )

A.λ=3,=() B.λ=﹣1,=(

C.λ=3,) D.λ=﹣1,=(

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:選擇題

如圖所示,AE切⊙D于點E,AC=CD=DB=10,則線段AE的長為( )

A.10 B.16 C.10 D.18

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:選擇題

(2005•福建)△ABC中,內切圓I和邊BC、CA、AB分別相切于點D、E、F,則∠FDE與 ∠A的關系是( )

A.∠FDE+∠A=90° B.∠FDE=∠A C.∠FDE+∠A=180° D.無法確定

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內接四邊形性質與判定定理(解析版) 題型:填空題

(2013•珠海一模)(幾何證明選講選做題)

如圖所示,等腰三角形ABC的底邊AC長0為6,其外接圓的半徑長為5,則三角形ABC的面積是 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內接四邊形性質與判定定理(解析版) 題型:選擇題

下列四邊形中,四個頂點一定在同一個圓上的是( )

A.平行四邊行 B.菱形 C.矩形 D.直角梯形

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-2 3.2復數(shù)的四則運算練習卷(解析版) 題型:填空題

已知(a﹣i)2=2i,其中i是虛數(shù)單位,那么實數(shù)a= .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-2 2.2直接證明與間接證明練習卷(解析版) 題型:選擇題

設x,y,z∈(0,+∞),a=x+,b=y+,c=z+,則a,b,c三數(shù)( )

A.至少有一個不大于2 B.都小于2

C.至少有一個不小于2 D.都大于2

 

查看答案和解析>>

同步練習冊答案