【題目】已知橢圓C:(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF,BF.若,cos ∠ABF=,則C的離心率為(  )

A. B. C. D.

【答案】C

【解析】

在△ABF中,由余弦定理得|AF|=6, 由橢圓的對(duì)稱性得B到右焦點(diǎn)的距離也是6, 由橢圓的定義知2a=6+8=14,又|AF|2+|BF|2=|AB|2進(jìn)而得到三角形的形狀,由直角三角形中線的性質(zhì)得到c=5,進(jìn)而得到結(jié)果.

在△ABF中,由余弦定理得|AF|2=82+102-2×8×10×,解得|AF|=6,由橢圓的對(duì)稱性得B到右焦點(diǎn)的距離也是6,由橢圓的定義知2a=6+8=14,又|AF|2+|BF|2=|AB|2,所以∠AFB=90°,所以c=|FO|=|AB|=5(O為坐標(biāo)原點(diǎn)),所以e.

故答案為:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+bex﹣2asinx(a,b∈R).
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時(shí),若f(x)>0對(duì)任意x∈(0,π)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)作為藍(lán)色海洋教育特色學(xué)校,隨機(jī)抽取100名學(xué)生,進(jìn)行一次海洋知識(shí)測(cè)試,按測(cè)試成績(jī)(假設(shè)考試成績(jī)均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.

(1)求測(cè)試成績(jī)?cè)赱80,85)內(nèi)的頻率;

(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識(shí)宣講小組,定期在校內(nèi)進(jìn)行義務(wù)宣講,并在這6名學(xué)生中隨機(jī)選取2名參加市組織的藍(lán)色海洋教育義務(wù)宣講隊(duì),求第四組至少有1名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a>0,b>0,則稱 為a,b的調(diào)和平均數(shù).如圖,點(diǎn)C為線段AB上的點(diǎn),且AC=a,BC=b,點(diǎn)O為線段AB中點(diǎn),以AB為直徑做半圓,過(guò)點(diǎn)C作AB的垂線交半圓于D,連結(jié)OD,AD,BD.過(guò)點(diǎn)C作OD的垂線,垂足為E,則圖中線段OD的長(zhǎng)度是a,b的算術(shù)平均數(shù),那么圖中表示a,b的幾何平均數(shù)與調(diào)和平均數(shù)的線段,以及由此得到的不等關(guān)系分別是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,實(shí)數(shù)a>0.
(Ⅰ)若a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x>0時(shí),不等式f(x)<0恒成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn).

(1)求橢圓方程;

(2)設(shè)不過(guò)原點(diǎn)O的直線,與該橢圓交于PQ兩點(diǎn),直線OP、OQ的斜率依次為,滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線C1:x2=2py的焦點(diǎn)在拋物線C2,點(diǎn)P是拋物線C1上的動(dòng)點(diǎn).

(1)求拋物線C1的方程及其準(zhǔn)線方程;

(2)過(guò)點(diǎn)P作拋物線C2的兩條切線,M,N分別為兩個(gè)切點(diǎn),設(shè)點(diǎn)P到直線MN的距離為d,求d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.

(1)求橢圓C的方程;
(2)求 的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:|OR||OS|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復(fù)平面上的四個(gè)點(diǎn),且向量對(duì)應(yīng)的復(fù)數(shù)分別為z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2為實(shí)數(shù),a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案