【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,點F,G分別是線段PB,PD上的中點,E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.

【答案】證明:(Ⅰ)在△PBD中, ∵點F,G分別是線段PB,PD上的中點,
∴FG∥BD,
∵BD平面EFG,F(xiàn)G平面EFG,
∴BD∥平面EFG.
解:(Ⅱ)∵底面ABCD是邊長為2的菱形,
∴OA⊥OB,
∵PO⊥平面ABCD,∴PO⊥OA,PO⊥OB,
如圖,以O(shè)為原點,OA、OB、OP分別為x,y,z軸,
建立空間直角坐標(biāo)系,
, , ,
,
設(shè)平面EFG的法向量為 =(x,y,z),
,令 ,得 =(﹣ ),
∵cos< , >= = ,
∴直線AB與平面EFG的成角的正弦值為

(Ⅲ)法1:延長EF,EG分別交AB,AD延長線于M,N,連接MN,發(fā)現(xiàn)剛好過點C,
連接CG,CF,
則四邊形EFCG為平面EFG與四棱錐的表面的交線.
法2:記平面EFG與直線PC的交點為H,設(shè) ,

=(﹣ )(﹣ )=0,解得λ=1.
所以H即為點C.
所以連接CG,CF,則四邊形EFCG為平面EFG與四棱錐的表面的交線.

【解析】(Ⅰ)推導(dǎo)出FG∥BD,由此能證明BD∥平面EFG. (Ⅱ)推導(dǎo)出OA⊥OB,PO⊥OA,PO⊥OB,以O(shè)為原點,OA、OB、OP分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AB與平面EFG的成角的正弦值.(Ⅲ)法1:延長EF,EG分別交AB,AD延長線于M,N,連接MN,發(fā)現(xiàn)剛好過點C,連接CG,CF,則四邊形EFCG為平面EFG與四棱錐的表面的交線.
法2:記平面EFG與直線PC的交點為H,設(shè) ,利用向量法求出λ=1.從而H即為點C.連接CG,CF,則四邊形EFCG為平面EFG與四棱錐的表面的交線.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和空間角的異面直線所成的角的相關(guān)知識可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ. (Ⅰ)求直角坐標(biāo)下圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點P(l,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin(ωx+φ)的圖象向左平移 個單位.若所得圖象與原圖象重合,則ω的值不可能等于(
A.4
B.6
C.8
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣3x2﹣11x.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x+1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|sinx|+cosx,現(xiàn)有如下幾個命題: ①該函數(shù)為偶函數(shù);
②該函數(shù)最小正周期為 ;
③該函數(shù)值域為 ;
④若定義區(qū)間(a,b)的長度為b﹣a,則該函數(shù)單調(diào)遞增區(qū)間長度的最大值為
其中正確命題為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知F1、F2是橢圓G: 的左、右焦點,直線l:y=k(x+1)經(jīng)過左焦點F1 , 且與橢圓G交于A、B兩點,△ABF2的周長為
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△ABF2為等腰直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為△ABC的外心,且 . ①若∠C=90°,則λ+μ=
②若∠ABC=60°,則λ+μ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1F2 , 這兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,記橢圓與雙曲線的離心率分別為e1 , e2 , 則e1e2的取值范圍是(
A.( ,+∞)
B.( ,+∞)
C.( ,+∞)
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),…,[80,90),[90,100]
(1)求頻率分布直方圖中a的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60)的受訪職工中,隨機(jī)抽取2人,求此2人的評分恰好有一人在[40,50)的概率.

查看答案和解析>>

同步練習(xí)冊答案