已知等差數(shù)列{an}中,a2=8,前10項(xiàng)和S10=185.
(1)求通項(xiàng)an;
(2)若從數(shù)列{an}中依次取第2項(xiàng)、第4項(xiàng)、第8項(xiàng)…第2n項(xiàng)……按原來(lái)的順序組成一個(gè)新的數(shù)列{bn},求數(shù)列{bn}的前n項(xiàng)和Tn
(1)an= 3n+2,(2)Tn= 6×2n+2n-6.
考查等差、等比數(shù)列性質(zhì)、求和公式及轉(zhuǎn)化能力.
(1)設(shè){an}公差為d,有,解得a1=5,d=3
∴an=a1+(n-1)d=3n+2
(2)∵bn=a=3×2n+2
∴Tn=b1+b2+…+bn=(3×21+2)+(3×22+2)+…+(3×2n+2)=3(21+22+…+2n)+2n=6×2n+2n-6.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

5. 已知數(shù)列,其中是首項(xiàng)為1,公差為1的等差數(shù)列;是公差為的等差數(shù)列;是公差為的等差數(shù)列().
(1)若,求;
(2)試寫(xiě)出關(guān)于的關(guān)系式,并求的取值范圍;
(3)續(xù)寫(xiě)已知數(shù)列,使得是公差為的等差數(shù)列,……,依次類(lèi)推,把已知數(shù)列推廣為無(wú)窮數(shù)列.提出同(2)類(lèi)似的問(wèn)題((2)應(yīng)當(dāng)作為特例),并進(jìn)行研究,你能得到什么樣的結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)已知數(shù)列{an},定義n∈N+)是數(shù)列{an}的倒均數(shù).   (1)若數(shù)列{an}的倒均數(shù)是,求數(shù)列{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}的首項(xiàng)為–1,公比為q =,其倒均數(shù)為Vn,問(wèn)是否存在正整數(shù)m,使得當(dāng)nm(n∈N+)時(shí),Vn<–16恒成立?若存在,求m的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和為,若,則等于     (    )
A.72B.54C.36D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足,
(1)求數(shù)列的通項(xiàng)公式;
(2)求使得的正整數(shù)的集合M。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在小于的正整數(shù)中,被除余的數(shù)的和是                       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,且,則中最大的是              ()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)例的首項(xiàng),前n項(xiàng)和
(1)求通項(xiàng);(2)記為數(shù)例的前項(xiàng)和,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等比數(shù)列滿(mǎn)足,且,則當(dāng)時(shí),           
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案