精英家教網 > 高中數學 > 題目詳情

在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.

(1)x2=2y   (2)存在,M(,1)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(12分)(2011•陜西)設橢圓C:過點(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應的圓Q的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
(1)當直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當λ變化時,是否存在與坐標軸不重合的直線l,使得S1=λS2?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓)過點,且橢圓的離心率為
(1)求橢圓的方程;
(2)若動點在直線上,過作直線交橢圓兩點,且為線段中點,再過作直線.求直線是否恒過定點,如果是則求出該定點的坐標,不是請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線,使得成立?若存在,求出實數的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知中心在原點的橢圓C: 的一個焦點為為橢圓C上一點,△MOF2的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點,且以線段AB為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓C:(a>b>0),過點(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線lx=2x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F兩點.證明:當點P在橢圓C上運動時,恒為定值.

查看答案和解析>>

同步練習冊答案