11.拋物線y2=4x上有兩點A、B到焦點的距離之和為8,則A、B到y(tǒng)軸的距離之和為( 。
A.8B.7C.6D.5

分析 拋物線的準線為x=-1,根據(jù)拋物線的定義可知A,B此拋物線焦點的距離之和等于xA+1+xB+1.

解答 解:拋物線的準線方程為x=-1.
則點A到此拋物線焦點的距離為xA+1,點B到此拋物線焦點的距離為xB+1.
∴點A、B到此拋物線焦點的距離之和為xA+1+xB+1=xA+xB+2=8+2=10.
則A、B到y(tǒng)軸的距離之和為:10-2=8.
故選:A.

點評 本題考查了拋物線的定義與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓x2+y2-10x+24=0的圓心是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的一個焦點,則此雙曲線的漸近線方程為( 。
A.$y=±\frac{4}{3}x$B.$y=±\frac{3}{4}x$C.$y=±\frac{3}{5}x$D.$y=±\frac{4}{5}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2-ax-lnx,a∈R.
(Ⅰ)若函數(shù)f(x)的圖象在x=1處的切線斜率為1,求實數(shù)a的值;
(Ⅱ)當(dāng)a≥-1時,記f(x)的極小值為H,求H的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC中,D在邊BC上,且BD=4,DC=2,∠B=60°,∠ADC=150°.
(1)求AC的長;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.圓x2+y2-2y-3=0的圓心坐標是(0,1),半徑2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知sinx-cosx=$\frac{1}{5}$,0≤x≤π,則sin(2x+$\frac{π}{4}$)的值為$\frac{17\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某工廠為了解用電量y與氣溫x℃之間的關(guān)系,隨機統(tǒng)計了5天的用電量與當(dāng)天平均氣溫,得到如下統(tǒng)計表:
 日期 8月1日8月7日 8月14日 8月18日  8月25日
 平均氣溫(℃) 33 30 32 30 25
 用電量(萬度) 38 35 41 36 30
$\sum_{i=1}^{5}$xiyi=5446,$\sum_{i=1}^{5}$xi2=4538,$\widehat$=$\frac{\sum_{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum_{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$
(1)請根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,據(jù)氣象預(yù)報9月3日的平均氣溫是23℃,請預(yù)測9月3日的用電量;(結(jié)果保留整數(shù))
(2)從表中任選兩天,求用電量(萬度)都超過35的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)成本y(萬元)有如下幾組樣本數(shù)據(jù):
x3456
y2.53.13.94.5
據(jù)相關(guān)性檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得到其回歸直線的斜率為0.8,則當(dāng)該產(chǎn)品的生產(chǎn)成本是6.7萬元時,其相應(yīng)的產(chǎn)量約是( 。
A.8B.8.5C.9D.9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,D,E分別為線段AB,AC上的點,且$AD=\frac{1}{2}AB$,$AE=\frac{2}{3}AC$,若BE⊥CD,則sinA的最大值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案