【題目】選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求的最小值及取得最小值時(shí)的取值范圍;
(Ⅱ)若集合,求實(shí)數(shù)的取值范圍.
【答案】(1)3(2)
【解析】試題分析: (Ⅰ)利用絕對(duì)值三角不等式,求得的最小值,以及取得最小值時(shí)x的取值范圍; (Ⅱ)當(dāng)集合,函數(shù)恒成立,即的圖象恒位于直線(xiàn)的上方,數(shù)形結(jié)合求得a的取值范圍.
試題解析:解:(Ⅰ)∵ 函數(shù),
當(dāng)且僅當(dāng),即時(shí)
函數(shù)的最小值為.
(Ⅱ)函數(shù)
而函數(shù)表示過(guò)點(diǎn),斜率為的一條直線(xiàn),
如圖所示:當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí), ,∴,
當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí), ,∴,
故當(dāng)集合,函數(shù)恒成立,
即的圖象恒位于直線(xiàn)的上方,
數(shù)形結(jié)合可得要求的的范圍為.
點(diǎn)睛: 兩數(shù)和差的絕對(duì)值的性質(zhì): ,特別注意此式,它是和差的絕對(duì)值與絕對(duì)值的和差性質(zhì),應(yīng)用此式來(lái)求某些函數(shù)的最值時(shí)一定要注意等號(hào)成立的條件.恒成立問(wèn)題的解決方法:(1)f(x)<m恒成立,須有[f(x)]max<m;(2)f(x)>m恒成立,須有[f(x)]min>m;(3)不等式的解集為R,即不等式恒成立;(4)不等式的解集為,即不等式無(wú)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,分別是的中點(diǎn)將分別沿折起,使重合于點(diǎn).則下列結(jié)論正確的是( )
A.
B. 平面
C. 二面角的余弦值為
D. 點(diǎn)在平面上的投影是的外心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠(chǎng)生產(chǎn)一種溶液,按市場(chǎng)要求,雜質(zhì)含量不能超過(guò)0.1%,若初始溶液含雜質(zhì)2%,每過(guò)濾一次可使雜質(zhì)含量減少.
(1)寫(xiě)出雜質(zhì)含量y與過(guò)濾次數(shù)n的函數(shù)關(guān)系式;
(2)過(guò)濾7次后的雜質(zhì)含量是多少?過(guò)濾8次后的雜質(zhì)含量是多少?至少應(yīng)過(guò)濾幾次才能使產(chǎn)品達(dá)到市場(chǎng)要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn),在圓內(nèi)任取一點(diǎn),則到直線(xiàn)的距離大于2的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間幾何體中,與均為邊長(zhǎng)為2的等邊三角形,為腰長(zhǎng)為3的等腰三角形,平面平面,平面平面分別為的中點(diǎn).
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,,,,到如圖所示的頻率分布直方圖.
(1)求圖中的值及樣本的中位數(shù)與眾數(shù);
(2)若從競(jìng)賽成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.
(3)為了激勵(lì)同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評(píng)出一二三等獎(jiǎng),得分在內(nèi)的為一等獎(jiǎng),得分在內(nèi)的為二等獎(jiǎng), 得分在內(nèi)的為三等獎(jiǎng).若將頻率視為概率,現(xiàn)從考生中隨機(jī)抽取三名,設(shè)為獲得三等獎(jiǎng)的人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為,若直線(xiàn)與曲線(xiàn)相切;
(1)求曲線(xiàn)的極坐標(biāo)方程與直線(xiàn)的直角坐標(biāo)方程;
(2)在曲線(xiàn)上取兩點(diǎn),與原點(diǎn)構(gòu)成,且滿(mǎn)足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的值域?yàn)?/span>,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com