【題目】已知命題 “存在 ”,命題 :“曲線 表示焦點(diǎn)在 軸上的橢圓”,命題 “曲線 表示雙曲線”
(1)若“ ”是真命題,求實(shí)數(shù) 的取值范圍;
(2)若 的必要不充分條件,求實(shí)數(shù) 的取值范圍.

【答案】
(1)解:若p為真,則
解得:m≤-1或m≥3
q為真,則
解得:-4 < m < -2或m > 4
若“pq”是真命題,則
解得: m > 4
m的取值范圍是{ m | m > 4}
(2)解:若s為真,則 ,即t < m < t + 1
∵由qs的必要不充分條件

t≥4
解得: t≥4
t的取值范圍是{ t | t≥4}
【解析】(1)“ p 且 q ”即p真且q真,求出都為真命題時m的取值范圍,交起來即為最終結(jié)果。注意命題p是“存在”問題,故 Δ≥ 0 。
(2) q 是 s 的必要不充分條件,故s是q的子集,解不等式即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合…,…,,對于…,,B=(…,,定義AB的差為

,AB之間的距離為.

Ⅰ)若,求;

Ⅱ)證明:對任意,有

(i),且;

(ii)三個數(shù)中至少有一個是偶數(shù);

Ⅲ)對于,再定義一種AB之間的運(yùn)算,并寫出兩條該運(yùn)算滿足的性質(zhì)(不需證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足a3·a5=112,a1+a7=22.

(1)求等差數(shù)列{an}的第七項(xiàng)a7和通項(xiàng)公式an

(2)若數(shù)列{bn}的通項(xiàng)bn=an+an+1,{bn}的前n項(xiàng)和Sn,寫出使得Sn小于55時所有可能的bn的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列 中, ,其前 項(xiàng)和為 ,等比數(shù)列 的各項(xiàng)均為正數(shù), ,公比為 ,且
(Ⅰ)求
(Ⅱ)設(shè)數(shù)列 滿足 ,求 的前 項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,E、F分別是AB、CD上的點(diǎn),BE=CF=1,BC=2,AB=CD=3,P、Q分別為DE、CF的中點(diǎn),現(xiàn)沿著EF翻折,使得二面角A﹣EF﹣B大小為
(Ⅰ)求證:PQ∥平面BCD;
(Ⅱ)求二面角A﹣DB﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各個說法正確的是( )

A. 終邊相同的角都相等 B. 鈍角是第二象限的角

C. 第一象限的角是銳角 D. 第四象限的角是負(fù)角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓過點(diǎn),求

1)周長最小的圓的方程;

2)圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體 中, ,直線 與直線 所成的角為 ,直線 與平面 所成的角為 ,則 ( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)2z=2x+ny(n>0),z的最大值為2,則y=tan(nx+ )的圖象向右平移 后的表達(dá)式為(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

查看答案和解析>>

同步練習(xí)冊答案