甲、乙、丙三人將參加某項(xiàng)測試,他們能達(dá)標(biāo)的概率分別是0.8,0.6,0.5,求
①三人都達(dá)標(biāo)的概率;
②三人中恰有2人達(dá)標(biāo)的概率.
考點(diǎn):相互獨(dú)立事件的概率乘法公式,互斥事件的概率加法公式
專題:概率與統(tǒng)計(jì)
分析:①把每個(gè)人達(dá)標(biāo)的概率相乘,即得三人都達(dá)標(biāo)的概率.
 ②分類求出三個(gè)人中有2個(gè)達(dá)標(biāo)而另一個(gè)不達(dá)標(biāo)的概率,相加即得所求.
解答: 解:①三人都達(dá)標(biāo)的概率為0.8×0.6×0.5=0.24.
 ②三人中恰有2人達(dá)標(biāo)的概率為0.8×0.6(1-0.5)+(1-0.8)×0.6×0.5+0.8×(1-0.4)×0.5
=0.46.
點(diǎn)評:本題主要考查相互獨(dú)立事件的概率乘法公式、互斥事件的概率加法公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零實(shí)數(shù)a、b,則“a2+b2≥2ab”是“
a
b
+
b
a
≥2”成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,則輸出的M是( 。
A、a1,a2,…,an的平均數(shù)
B、a1,a2,…,an的中位數(shù)
C、a1,a2,…,an中的最大數(shù)
D、a1,a2,…,an中的最小數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+5
x+2

(1)若x∈[1,10],求f(x)的取值范圍;
(2)證明函數(shù)f(x)的圖象關(guān)于(-2,1)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)生產(chǎn)一種汽車配件,經(jīng)抽樣統(tǒng)計(jì),該企業(yè)生產(chǎn)的配件尺寸的樣本頻率分布直方圖如下.配件尺寸在[60,62)內(nèi)的為一等品,尺寸在[58,60)或[62,64)內(nèi)的為二等品,其余為三等品.用頻率近似表示概率.
(Ⅰ)試估算該企業(yè)生產(chǎn)的配件的平均尺寸;
(Ⅱ)若該企業(yè)每生產(chǎn)1個(gè)配件的獲利情況是:一等品50元,二等品20元,三等品5元.設(shè)該企業(yè)生產(chǎn)1個(gè)這種配件能獲利X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:
a
=(2cosx,sinx),
b
=(
3
cosx,2cosx),設(shè)函數(shù)f(x)=
a
b
-
3
(x∈R)
求:
(1)f(x)的最小正周期;
(2)f(x)的最大值以及取得最大值時(shí)x的值;
(3)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=3sin(ωx+
π
6
),ω>0,x∈(-∞,+∞),且f(x)以
π
2
為最小正周期.
(1)求f(x)的解析式;
(2)已知f(
α
4
+
π
12
)=
9
5
,求sinα的值.
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sin(2x+
π
3
)最小正周期,單調(diào)遞增區(qū)間,對稱軸,對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|+
2
ax
(a>0,a≠1)
(1)若a>1,且關(guān)于x的方程f(x)=m有兩個(gè)不同的正數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=f(-x),x∈[-2,+∞),滿足如下性質(zhì):若存在最大(小)值,則最大(小)值與a無關(guān).試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案