【題目】設全集為R,集合A={x| ≥0},B={x|﹣2≤x<0},則(RA)∩B=( )
A.(﹣1,0)
B.[﹣1,0)
C.[﹣2,﹣1]
D.[﹣2,﹣1)
科目:高中數學 來源: 題型:
【題目】甲乙兩人同時生產內徑為的一種零件,為了對兩人的生產質量進行評比,從他們生產的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產的零件內徑的尺寸看、誰生產的零件質量較高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一動點, 到點的距離減去它到軸距離的差都是.
()求動點的軌跡方程.
()設動點的軌跡為,已知定點、,直線、與軌跡的另一個交點分別為、.
(i)點能否為線段的中點,若能,求出直線的方程,若不能,說明理由.
(ii)求證:直線過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓的左、右焦點為,右頂點為,上頂點為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過點且不垂直于坐標軸的直線與橢圓交于兩點,已知點,當時,求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統(tǒng)計表明,家庭的月理財投入(單位:千元)與月收入(單位:千元)之間具有線性相關關系.某銀行隨機抽取5個家庭,獲得第()個家庭的月理財投入與月收入的數據資料,經計算得.
(1)求關于的回歸方程;
(2)判斷與之間是正相關還是負相關;
(3)若某家庭月理財投入為5千元,預測該家庭的月收入.
附:回歸方程的斜率與截距的最小二乘估計公式分別為:
,其中為樣本平均值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F1 , F2分別為橢圓C: + =1(a>b>0)的左、右兩個焦點,橢圓上點M( , )到F1、F2兩點的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過右焦點且垂直于x軸的直線與橢圓交于點N(點N在第一象限),E,F是橢圓C上的兩個動點,如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com