設(shè)函數(shù)f(x)=x2+bln(x+1),
(1)若對(duì)定義域的任意x,都有f(x)≥f(1)成立,求實(shí)數(shù)b的值;
(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍.
【答案】分析:(1)根據(jù)對(duì)定義域的任意x,都有f(x)≥f(1)成立知函數(shù)f(x)在定義域內(nèi)的最小值為f(1),從而得到f′(1)=0即可
(2)要求函數(shù)f(x)在定義域上是單調(diào)函數(shù),即要求f′(x)≥0或f′(x)≤0在(-1,+∞)上恒成立,然后分類(lèi)討論:當(dāng)f′(x)≥0時(shí),即2x2+2x+b≥0在(-1,+∞)上恒成立,即b≥-2x2-2x=恒成立;當(dāng)f′(x)≤0時(shí),2x2+2x+b≤0,即b≤-(2x2+2x)恒成立,因-(2x2+2x)在(-1,+∞)上沒(méi)有最小值,故不符合題意
解答:解:(1)由x+1>0得x>-1
∴f(x)的定義域?yàn)椋?1,+∞),
對(duì)x∈(-1,+∞),都有f(x)≥f(1),
∴f(1)是函數(shù)f(x)的最小值,故有f′(1)=0,
,∴,
解得b=-4.
(2)∵,
又函數(shù)f(x)在定義域上是單調(diào)函數(shù),
∴f′(x)≥0或f′(x)≤0在(-1,+∞)上恒成立.
若f′(x)≥0,
∵x+1>0,
∴2x2+2x+b≥0在(-1,+∞)上恒成立,
即b≥-2x2-2x=恒成立,由此得b≥;
若f′(x)≤0,
∵x+1>0,
∴2x2+2x+b≤0,即b≤-(2x2+2x)恒成立,
因-(2x2+2x)在(-1,+∞)上沒(méi)有最小值,
∴不存在實(shí)數(shù)b使f(x)≤0恒成立.
綜上所述,實(shí)數(shù)b的取值范圍是
故答案為:(1)b=-4;(2)實(shí)數(shù)b的取值范圍是
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,另外還有分類(lèi)討論的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線y=f(x)在x=1處的切線為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案