已知函數(shù)f(x)=x3+x,x∈R
(1)不必證明,直接寫出f(x)在R上的單調(diào)性;
(2)證明:f(x)是奇函數(shù);
(3)解關(guān)于t的不等式f(1-t)+f(2t-3)>0.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)單調(diào)性的性質(zhì),函數(shù)奇偶性的判斷
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可寫出f(x)在R上的單調(diào)性;
(2)根據(jù)函數(shù)奇偶性的定義即可證明:f(x)是奇函數(shù);
(3)利用函數(shù)的奇偶性和單調(diào)性將不等式f(1-t)+f(2t-3)>0進(jìn)行轉(zhuǎn)化即可得到結(jié)論.
解答: 解:(1)函數(shù)的導(dǎo)數(shù)f′(x)=3x2+1>0,
則函數(shù)f(x)單調(diào)遞增,即f(x)在R上的單調(diào)遞增;
(2)由f(-x)=-x3-x=-(x3+x)=-f(x),則f(x)是奇函數(shù);
(3)不等式f(1-t)+f(2t-3)>0等價(jià)為f(2t-3)>-f(1-t)=f(t-1),
∵f(x)在R上的單調(diào)遞增,
∴2t-3>t-1,
即t>2.
點(diǎn)評:本題主要考查函數(shù)單調(diào)性,奇偶性以及不等式的解法,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)是解決不等式的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,AB=2,PE=
3
,PC=
10
,E是AD的中點(diǎn),PC上的點(diǎn)F滿足PE=2FC.
(Ⅰ)求證:AD⊥平面PBE;
(Ⅱ)求三棱錐F-BEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足3nan+1=(an+2n)(n+1),n∈N+,且a1=
4
3

(Ⅰ)設(shè)數(shù)列{bn}滿足bn=
an
n
-1,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)若Sn為數(shù)列{an}的前n項(xiàng)和,求證:4Sn<2n2+2n+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(2x+
π
6

(1)若x0∈[0,2π),且f(x0)=
3
2
,求x0的值;
(2)將函數(shù)f(x)的圖象向右平移m(m>0)個(gè)單位長度后得到函數(shù)y=g(x)的圖象,且函數(shù)y=g(x)是偶函數(shù),求m的最小值;
(3)若關(guān)于x的方程f(x)-a=0在x∈[0,
π
2
)上只有一個(gè)實(shí)數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosλθ,cos(5-λ)θ),
b
=(sin(5-λ)θ,sinλθ),λ,θ∈R
(1)求|
a
|2+|
b
|2的值;
(2)若
a
b
,求θ;
(3)若θ=
π
10
,求證:
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosxsin(x+
π
3
)-
3
2

(1)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的零點(diǎn)的集合.
(2)在給定的坐標(biāo)系內(nèi),用五點(diǎn)作圖法畫出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
e2
是兩個(gè)單位向量,其夾角為60°,且
a
=2
e1
+
e2
,
b
=-3
e1
+2
e2

(1)求
a
b

(2)分別求
a
,
b
的模;
(3)求
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的右焦點(diǎn)F(
2
,0),直線l:y=kx-1恒過橢圓短軸一個(gè)頂點(diǎn)B.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若A(0,1)關(guān)于直線l:y=kx-1的對稱點(diǎn)P(不同于點(diǎn)A)在橢圓上,求出l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖的算法流程圖:若a=sin60°,b=cos60°,c=tan60°,則輸出的應(yīng)該是
 
.(填a,b,c中的一個(gè))

查看答案和解析>>

同步練習(xí)冊答案